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ABSTRACT

I discuss a new intellectual paradigm, social economics and finance—the study of the
social processes that shape economic thinking and behavior. This emerging field recog-
nizes that people observe and talk to each other. A key, underexploited building block
of social economics and finance is social transmission bias: systematic directional shift
in signals or ideas induced by social transactions. I use five “fables” (models) to illus-
trate the novelty and scope of the transmission bias approach, and offer several emer-
gent themes. For example, social transmission bias compounds recursively, which can
help explain booms, bubbles, return anomalies, and swings in economic sentiment.

THIS ADDRESS DISCUSSES A NEW intellectual paradigm, which I call social eco-
nomics and finance—the study of how social interaction affects economic out-
comes. In standard analyses of economic behavior, people interact only imper-
sonally via trading orders and observation of market price. A missing chapter
in our understanding of finance consists of the social processes that shape
economic thinking and behavior.

Social economics and finance recognizes that people observe each other and
talk to each other, where talking includes written text and social media. A key
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but underexploited intellectual building block of social economics and finance
is social transmission bias, the systematic directional modification of ideas or
signals as they pass from person to person.

By way of comparison, previous intellectual paradigm shifts include infor-
mation economics, which recognizes that some people know things that others
do not, and behavioral economics and finance, which recognizes that people
make systematic mistakes. Of course, scholars knew these obvious facts long
before each of these paradigm shifts. The problem was that these facts were
considered only informally and sporadically—they were not systematically, ex-
plicitly, and routinely incorporated in our thinking and models to generate test
hypotheses. Similarly, social interaction is only starting to join the standard
intellectual toolkit in finance research.

As things stand, in behavioral finance, for example, the path from assump-
tions to conclusions is often very direct. With respect to beliefs, when we observe
that investors trade too aggressively, we conclude that they must be overcon-
fident. When we observe that expectations become more optimistic after price
run-ups than after run-downs, we conclude that they must overextrapolate.
With regard to preferences, when we see individual investors tilted toward buy-
ing lottery stocks, selling winners more than losers, or saving too little—well,
we have behavioral models in which investors have preferences for skewness,
for realizing gains not losses, and for immediate consumption.

I am a fan of these direct approaches. They capture a large part of the truth.
However, crucially, there can be attraction to a behavior without any preference
for it. Moths are attracted to flame—a nearby light source. But moths are not
flame-loving. There is no cognitive reward system that pays off more for ap-
proaching a flame. Instead, moths evolved under natural selection to navigate
based on a distant light source, the moon. Nearby light sources fool their naviga-
tion systems. So attraction to flame is an indirect effect, not a direct preference.

Another kind of indirect effect is social emergence—the phenomenon whereby
social outcomes are not just the sums of individual propensities. An example
of a socially emergent effect is the phenomenon of death spirals among army
ants, as seen in Figure 1.

These can be up to hundreds of feet wide. The ants continue to walk in circles
until they die.

Surely this could not happen to a smarter animal, such as a mammal. Except,
apparently, for man’s best friend, as seen in videos of jostling dogs rotating
about their shared food bowl. Are birds smarter? The most disturbing spectacle
of all is seen in a video of turkeys marching in a circle around a dead cat—
apparently some kind of religious ritual.

Should we conclude from these behaviors that animals have a rotative in-
stinct? A heuristic or bias for circular motion? Of course not. In the case of
ants, there are instincts for random search for food, and instincts that pro-
mote following other ants. As a result, if the ant at the front of the line by
chance starts following the ant at the back of the line, a dysfunctional so-
cial outcome results—somewhat reminiscent of a fad or bubble.1 These animal

1 This phenomenon is closely akin to information cascades (Banerjee (1992), Bikhchandani,
Hirshleifer, and Welch (1992)). In information cascades, even rational social learning results in
fad-like outcomes.
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Figure 1. Army ant death spiral. Example of a dysfunctional emergent social
outcome. Army ants continue to walk in circles until they die. Source: George Lin,
https://www.youtube.com/watch?v=N0HoqjxfvJ4.

circles illustrate that aggregate social outcomes often look nothing like indi-
vidual propensities. There is no direct instinct for a single ant, dog, or bird to
move endlessly in circles. Behavior is socially emergent.

There are also socially emergent human behaviors. Consider, for example,
self-enhancing transmission bias—the tendency of investors to discuss their
trades with others more after experiencing strong performance than after weak
performance.2 If listeners fail to adjust for this bias, they will tend to be unduly
attracted to the sender’s investing strategy. As we will see, this effect favors the
spread of some strategies over others (Han, Hirshleifer, and Walden (2019a)),
but not because of any direct psychological bias for one strategy over another.
The attraction to certain kinds of investment strategies is socially emergent.

An implication of social emergence is that it is unwarranted to slip from
an empirically observed behavior to the conclusion that there is a direct psy-
chological bias “for” that behavior. We often forget this in the finance field.
Emergent social effects are usually neglected. A key reason for this is that
social transmission bias is missing from our standard intellectual toolkit.

Social economics and finance seeks to expand the intellectual toolkit. To do
so, it needs a firm foundation of standard concepts: preferences, beliefs, psycho-
logical bias, optimization, and equilibrium. Furthermore, as with behavioral
economics, good social economics and finance requires good assumptions about
psychological bias. Such assumptions need to derive from available evidence
and evolutionary plausibility. Using this foundation, the purpose is to cap-
ture, in systematic and tractable ways, socially emergent effects on economic
behavior, as well as more conventional direct effects.

The main body of this talk consists of five “fables” (models) of social transmis-
sion bias in economics and finance. These fables describe research, including
work-in-progress, by my coauthors and myself. My purpose is to suggest that

2 Evidence for this is provided by Heimer and Simon (2015), Ammann and Schaub (2016), Huang,
Hwang, and Lou (2018), Escobar and Pedraza (2019), and Lim, Ng, and Uzzi (2020).

https://www.youtube.com/watch?v=N0HoqjxfvJ4
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Six Themes about Social Economics and Finance

I offer six themes about a new intellectual paradigm, social
economics and finance, and one of its key intellectual building
blocks, social transmission bias.
• Compounding: Social transmission bias compounds recur-

sively, so small bias can have large effects.
• Idiosyncrasy: Social transmission bias helps explain why

aggregate outcomes are often error-prone and unpredictable.
• Dynamics: Social transmission bias offers an endogenous

social explanation for action booms, price bubbles, and
swings in investor sentiment.

• Emergence: Socially emergent behavior often looks com-
pletely different from individual propensities.

• Mimicry: Social emergence can easily create the illusion of
a direct individual propensity “for” a behavior when no such
propensity exists. So the inferences drawn from empirical
tests of behavioral hypotheses are often overstated.

• Proxies: This approach suggests new test variables for em-
pirical research: (i) general social and network proxies, and
(ii) proxies for transmission bias.

Figure 2. Six themes about social economics and finance. This figure summarizes six
themes about a new intellectual paradigm, social economics and finance, and one of its build-
ing blocks, social transmission bias. (Color figure can be viewed at wileyonlinelibrary.com)

the transmission bias approach may have novel messages to offer, and may be
wide-ranging in scope of application. I then discuss some themes that emerge
from these fables. Figure 2 summarizes six main themes about social economics
and finance and the effects of social transmission bias.

But first, in a necessarily selective way, I mention a few milestones of the
social economics and finance paradigm shift. These include models of rational
as well as biased social influence in networks3; the cultural transmission of
ethnic, religious, and cooperative traits (Boyd and Richerson (1985), Bisin and

3 Rational: Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), and Acemoglu et al.
(2011). Biased: Ellison and Fudenberg (1993), DeMarzo, Vayanos, and Zwiebel (2001, 2003), Eyster
and Rabin (2010), Golub and Jackson (2010), and Bohren (2016). Surveys include Jackson (2008)
and Golub and Sadler (2016).
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Verdier (2000), Tabellini (2008)), and payoff interactions and games (Sandholm
(2010)). In addition, empirical literatures have emerged on narratives and folk
models in economics and finance4; on culture, ideology, norms, and economic
outcomes5; and on contagion of economic/financial behaviors, at the levels of
both individuals6 and firms.7

Social transmission bias derives from combinations of bias in the messages
that senders convey to others (or what is visible to others about “senders” as
targets of observation) and bias on the part of receivers in what is absorbed and
understood. There are of course other important intellectual building blocks for
understanding human behavior. One such concept is social network structure,
which has been the focus of intense interdisciplinary study in recent years. In
contrast, the complementary concept of social transmission bias is underex-
plored and needs to join our standard intellectual toolkit.

Transmission bias can take at least two forms. The first is signal distortion:
a shift in the sign or intensity of what is transmitted. For example, the owner
of a stock may talk up the firm to try to persuade others to buy it. If listeners
do not adequately discount for this, their beliefs will be biased.

The second is selection: a sender’s information is not always conveyed to
a potential receiver. The beliefs of a receiver who neglects this fact will be
biased. When censorship by a potential sender is a function of the values of the
sender’s information signals, there is also selection bias, such as self-enhancing
transmission bias, as discussed above.

I now turn to five fables of social transmission bias in economics and finance.
My main new model in this paper is Fable 4 on biased information percolation.

I. Fable 1: Bandwidth Constraints and Simplistic Thinking

Fable 1 is in-progress research (Hirshleifer and Tamuz (2020)).
Communication bandwidth constraints, such as Twitter character limits and

time constraints in conversation, are a major obstacle to conveying ideas with
nuance. Another major hindrance is limited cognition. It takes considerable
effort to convey and absorb message nuance. So there is usually a loss of nu-
ance in social transmission, as is evident in TV sound-bite commentary about
social issues.

Suppose that in updating their beliefs, receivers do not adjust for loss of
nuance. This is consistent with standard limited attention effects in psychology
and in behavioral economics and finance. Suppose further that receivers believe

4 See Shiller, Kon-Ya, and Tsutsui (1996) and Shiller (2000b, 2017, 2019).
5 See, for example, Grinblatt and Keloharju (2001), Barro and McCleary (2003), Guiso, Sapienza,

and Zingales (2003, 2004), Hong and Kacperczyk (2009), Hong and Kostovetsky (2012), and Graham
et al. (2019).

6 See, for example, Glaeser, Sacerdote, and Scheinkman (1996), Kelly and O’Grada (2000), Brock
and Durlauf (2001), Duflo and Saez (2002, 2003), Hong, Kubik, and Stein (2004), Rantala (2019),
and Bailey et al. (2019).

7 See, for example, Bizjak, Lemmon, and Whitby (2009), Chiu, Teoh, and Tian (2013), and
Fracassi (2016).
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that senders possess meaningful information. Then receivers will tend to infer
that senders have simple or extreme beliefs. So receivers will adopt beliefs that
actually are simplistic.

As receivers become senders in turn, this loss of nuance may by iterated.
So society can shift toward extremes of simplistic thinking, to the point that
(conjecturally) judgments are worse than if people formed judgments in iso-
lation. The reader can decide how realistic this is as a description of public
understanding of economics and society.

Of course, often social processes improve our collective intelligence, as em-
phasized by Henrich (2015) and as evidenced by the rise of sophisticated arts
and sciences. The conditions under which social interaction lead to these very
different outcomes deserves further study.

II. Fable 2: Self-Enhancing Transmission Bias

Fable 2 is a model of self-enhancing transmission bias (Han, Hirshleifer,
and Walden (2019a)). Suppose that investors adopt one of two strategies: A for
Active or P for Passive, where A refers to a strategy with either higher variance
or higher skewness. Investors of type A or P are randomly selected to meet in
pairs over time. In each meeting, the Sender has a probability of reporting the
Sender’s strategy return to the Receiver. The Sender reports high return more
often than low return.

Owing to self-enhancing transmission, there is an upward selection bias in
the return reports seen by receivers. This has a larger effect for the high-
variance strategy, which generates a larger upper tail of high returns that are
heavily reported and highly persuasive.

Receivers are subject to two standard behavioral biases: they fail to adjust for
self-enhancing transmission, and they think that reported past performance is
strongly indicative of future performance. As a consequence, the high-variance
A strategy tends to spread through the population, even if its payoff distribution
is inferior. This can explain some puzzles in trading, such as nondiversification,
as well as some pricing anomalies, such as the volatility and beta puzzles. There
is also empirical support for this mechanism, as mentioned earlier.

Consider now a variation. Suppose that extreme returns are highly salient,
so that receivers pay more attention to very high and very low returns. Sup-
pose that a receiver is only converted to a strategy if the receiver attends to
the sender’s message. Then positive skewness strategies also tend to spread
through the population—even after controlling for variance. Intuitively, posi-
tively skewed strategies generate the high-return outcomes that are both heav-
ily transmitted and attended to, and highly persuasive to receivers.

Fable 2 offers some important lessons. In the model, investors are attracted
to high variance or skewness, but they do not have a preference for strategies
based on variance or skewness. Nor do they have a belief that high variance
or skewness is indicative of a superior investing opportunity. Indeed, they may
be unaware of the variances and skewnesses of the available strategies. The
attraction to these strategy characteristics is socially emergent. As we show,
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the social nature of these effects has distinctive empirical implications about
the effects on investment choices of investor personality traits (e.g., degree
of self-enhancing transmission bias), the position of an investor in the social
network, and overall network connectivity.

III. Fable 3: Visibility Bias and Overconsumption

Fable 3 is a model of visibility bias and overconsumption (Han, Hirshleifer,
and Walden (2019b)). In our context, visibility bias refers to the fact that en-
gaging in a consumption activity is often more visible to others than refraining
from doing so. For example, when the first Starbucks in a city in China opened,
long lines of people stretching outdoors made it evident to others that many
were willing to spend a lot on coffee instead of drinking cheaply at home.
Wearable electronics are also highly visible.

Suppose that observers do not adjust for the selection bias toward seeing
consumption rather than nonconsumption events. Such neglect of the features
of the data-generating process is a standard behavioral bias. Then observers
will tend to infer that others are consuming heavily.

Now let x denote people’s need for saving, such as the probability of expe-
riencing a personal wealth disaster. It is the same for everyone, but its value
is uncertain. Different people have different information signals about x, so
they can learn by observing others. Owing to visibility bias, people mistak-
enly “learn” from the apparent high consumption of others that there is little
need to save. So in equilibrium, there is overconsumption, that is, undersaving.
Furthermore, there is a positive feedback effect, because people as targets of
observation really are consuming heavily. So the total effect can be large.

This approach to understanding savings decisions has some nonobvious con-
sequences. For example, information asymmetry about others’ wealth weakens
the overconsumption effect, consistent with some empirical findings (Jin, Li,
and Wu (2011), Coibion et al. (2014)). This is in sharp contrast to wealth sig-
naling models (with “Veblen effects”), in which information asymmetry is the
source of overconsumption. This approach also offers a novel explanation (for
reasons I will not get into here) for the large drop in the U.S. savings rate over
a period of decades.

The moral of the story is that overconsumption is an emergent social out-
come. There is no direct bias for overconsumption. This contrasts with the
standard behavioral economic theory that people find it tempting to consume
immediately (present-biased preferences; see, Laibson (1997)).

Owing to this difference, the social transmission bias approach has differ-
ent empirical and policy implications from the behavioral economics approach.
For example, in our model, overconsumption is driven by mistaken belief up-
dating, so accurate disclosure about others’ consumption can help, in sharp
contrast with most behavioral models of undersaving. The social transmission
bias approach also suggests that there can be benefits to targeting policy in-
terventions to people with central positions in the social network. So for good
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policy, empirical testing is vital. As it turns out, there is empirical support for
both mechanisms (see, e.g., D’Acunto, Rossi, and Weber (2019)).

IV. Fable 4: Biased Information Percolation, Action Booms, and Price
Bubbles

In the classic book The Psychology of Rumor, Allport and Postman (1947) de-
scribe transmission chain experiments in which subjects sequentially recount
stories to each other, much like the game of telephone or Chinese whispers. A
key conclusion is that information is systematically distorted in a process of
leveling and sharpening. Subjects emphasize the perceived essence of a story by
selectively retaining details consistent with it, intensifying details, increasing
magnitudes, and adding compatible new details and explanations. As a result,
rumors can become inaccurate and extreme.

Like rumors, booms in social and economic activity and asset market bubbles
often have a “beyond all reason” flavor, seemingly untethered from any sensible
interpretation of publicly arriving news. Examples include sudden religious re-
vivals, surges in the vilification of political enemies, ethnic groups, and foreign
countries, and price bubble episodes (as recounted in Shiller (2000a)).

In contrast, in existing models of information percolation, beliefs and actions
become very accurate as information accumulates. In these models, rational
agents meet and sequentially exchange private signals about the payoff of some
action of common interest (e.g., Duffie, Malamud, and Manso (2009)). Here, I
consider biased information percolation, a process in which there are distortions
in information transmission. I explore whether biased information percolation
can explain booms and collapses in aggregate behaviors and market prices.

I consider a setting in which each member of a continuum of agents is en-
dowed with one private signal about the per-unit payoff of an action of common
interest (such as buying or selling an asset). The terminal payoff and signals
are jointly Gaussian. At a sequence of Poisson arrival times, each agent is
drawn in a meeting in which two agents share biased versions of the signals
they have acquired up to that date. At each discrete date, public signals of
growing informativeness arrive, which eventually correct the action boom or
price bubble.

At each continuous date, agents myopically maximize the mean-variance
expected utility of their terminal wealth. In the Action Booms Model, there is
no fixed constraint on the aggregate action taken by agents. So as enthusiasm
temporarily grows, agents jointly undertake more—an action boom (or negative
boom). The Action Booms Model can apply to behaviors of individuals, such as
political action or day trading, as well as to firm-level behaviors, such as the
adoption of organizational or governance structures, financing strategies, and
projects or acquisitions.

In the Price Bubbles Model, the action is buying or selling an asset, so the
aggregate action—demand for the asset—is constrained to be equal to supply.
Supply is an exogenous random variable, as in rational expectations models of
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securities markets. Investors partially infer the private information of others
from market price. Biased information percolation results in asset mispricing.

I introduce two types of social transmission biases to the information percola-
tion setting. The first is misreporting—an upward or downward bias in senders’
reports about their signal by some fixed amount b. I call this b bias. Each time
an agent acquires a biased signal from others, an additional b is added to it, so
b bias compounds recursively. Receivers interpret reports naively—without ad-
justing for b bias. The level of b is a random variable, the same for all meetings,
and can be positive or negative, with E[b] > 0.

The second transmission bias is meeting rate misperception. Agents under-
or overestimate the intensity of the Poisson process that selects agents into
meetings by some fixed factor κ, where κ = 1 indicates no bias. I call this κ

bias.
For b bias, I view b > 0 as typical. There is evidence that consumers of media

content are more likely to share positive than negative content (Berger and
Milkman (2012)). As discussed in Berger (2014), one possible reason for doing
so is to maintain a reputation for providing useful information. As argued in
marketing literature, when there is a wide range of product choices, it is often
more helpful to hear about what to buy than what not to buy. Furthermore,
being positive is often seen as an attractive personality trait, which can be
a motive for positive reporting (Tesser and Rosen (1975)). Both motives may
have shaped the psychology of conscious or unconscious bias in information
sharing.

Alternatively, b bias can derive entirely from the message receiver. For ex-
ample, receivers may be more attentive to positive than negative signals about
consumer products if positive signals tend to be more useful. A related argu-
ment about net stock buying in response to news, given short-sale constraints,
is made by Barber and Odean (2008). Also, if agents predominantly take long
positions, then motivated reasoning (“wishful thinking”; see, e.g., the model of
Bénabou and Tirole (2002)) promotes an optimistic bias in the interpretation
of messages, b > 0.

On the other hand, psychologists have documented negativity bias (Rozin and
Royzman (2001), Baumeister et al. (2001))—a general tendency to pay more
attention to negative information and to interpret information negatively. An
evolutionary justification for negativity bias is that missing a threat just once
can be fatal, whereas the cost of missing an opportunity is only incremental.

Receiver naivete about b bias is consistent with evidence that people often
take information at face value, instead of adjusting for features of the data-
generating process. There is extensive experimental and field evidence of this
from several fields.

Limited attention also provides a motivation for κ bias, where I regard
downward bias, κ < 1, as typical. An agent does not directly observe most
of other agents’ meetings. There is much evidence of “out-of-sight, out-of-
mind” salience effects, whereby people underweight information that can be
inferred rather than directly observed (see, e.g., Payne, Bettman, and Johnson
(1993)). The κ bias is also in the spirit of models of persuasion bias and of naive
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Figure 3. Expected price path in the Price Bubbles Model. The figure plots (32) and shows
the smoothed and unsmoothed expected price paths for positive bubbles (b > 0), where b is the
transmission bias. These paths illustrate the following four phases: (i) the inception phase, (ii) the
boom phase, (iii) the correction phase, and (iv) the terminal phase. As in (20), smoothed public
precision is τ̂ Z

s ≡ eζ (s−0.5)τ P , where ζ parametrizes the growth rate in the smoothed precision, s is
time, and τ P is the initial unsmoothed public precision. Parameter values: τ P = 0.1, τ θ = 0.1, τ S =
0.1, τ X = 100, η = 0.39, γ = 0.1, κ = 0.5, ζ = 1, and b = 10, where τ θ is the supply shock precision,
τ S is private signal precision, τ X is the precision of asset payoff, η is the percolation meeting rate,
γ is the coefficient of absolute risk aversion, and κ is the coefficient for the misperception of the
meeting rate.

herding.8 In the Action Booms Model, κ bias does not come into play. Owing to
b bias, when b > 0, on average the aggregate action follows a path that exceeds
the rational benchmark (the case of b = 0). I define the excess action as the
percentage difference between the expected aggregate action and the expected
aggregate action under the rational benchmark. The smoothed path of the ex-
cess action increases slowly at first, but growth then accelerates. Eventually,
as more and more informative public information arrives, the excess action is
driven toward zero. Similarly, in the Price Bubbles Model, the expected price
path conditional on b > 0, appropriately smoothed, rises above and then falls
back toward fundamental value. So under appropriate parameter values, the
smoothed excess action path and expected price path look qualitatively similar,
with four phases as illustrated for the Price Bubbles Model in Figure 3. For
positive bubbles (b > 0), these phases are:

� The inception phase. Expected price or excess action grows at an acceler-
ating rate (convexity).

8 See DeMarzo, Vayanos, and Zwiebel (2001, 2003) and Eyster and Rabin (2010). My model
shares with these the feature that agents do not properly account for how their information
sources acquire signals from others. In these models, agents double-count signals that are received
via multiple pathways in a social network. A difference here is that in the percolation setting, no
signal is ever received from some other agent via multiple pathways.
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� The boom phase. Expected price or excess action grows at a decreasing rate
(concavity), and reaches a peak.

� The correction phase. Starting from its peak, expected price or excess action
declines at an increasing rate (concavity).

� The terminal phase. Expected price or excess action declines at a decreas-
ing rate (convexity), asymptoting toward its fundamental value.

For b < 0, these phases are inverted to create a U-shape instead of a
hump-shape.

The accelerating growth during the inception phase results from complemen-
tarity between the increase in the per capita number of signals that agents
possess and the increase in the biases of those signals. As in previous models of
information percolation, the per capita number of signals rises exponentially
over time. Furthermore, I show that the average bias per signal possessed by
agents increases linearly with time. Thus, at first, price or action rises, on av-
erage, more and more quickly relative to a zero-bias benchmark. Eventually,
public information arrival corrects the overoptimism. Since these boom or price
bubble effects are socially driven, a cross-sectional empirical implication is that
more social agents take more extreme actions.

Zooming in on the bubble trajectory without smoothing reveals oscillatory
dynamics. In the b > 0 case, on each of the public information release dates,
overoptimism is on average partially corrected, inducing discrete drops in the
excess action. The reverse applies when b < 0. During the inception phase of the
boom, these drops are quickly reversed and followed by further steepening. As
the boom peaks, under appropriate parameter values there is a period during
which the amplitude of the oscillations gets large, as the downward pressure
on public news dates contends with the upward pressure of biased percolation
between these dates. This peak oscillation is a distinctive testable property
of the model. Eventually, public resolution of uncertainty starts to overwhelm
biased percolation, so that on average the bubble enters the terminal phase
and oscillations are dampened.

Furthermore, dispersion across investors in their accumulated b biases
promotes disagreement. This results in large cross-sectional differences
in behavior, which, in the Price Bubbles Model, takes the form of heavy
speculative trading. So irrational trading also tends to rise and fall with the
bubble. Furthermore, if κ < 1, κ bias causes agents to perceive market price to
be less informative than it really is. This also encourages irrational trading,
even though there is no direct bias, such as overconfidence, “for” trading
aggressively.

As in the Action Booms Model, when b > 0, bias is amplified recursively. This
results in convex growth in overvaluation that is only overcome when a very
strong opposing force finally starts to operate. So the model is consistent with
the “beyond all reason” flavor of many bubble episodes, such as the stupefying
swings in Bitcoin prices. The implication of an accelerating initial rate of growth
of bubbles is consistent with the evidence in Greenwood, Shleifer, and You
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(2019) that the price run-up in bubbles tends to have an explosive, that is,
convex, shape before correcting.

On average, when b > 0, there is a run-up over time during the inception and
boom phases, with the expected price dropping discretely at each discrete news
arrival date; the reverse applies when b < 0. So as in the Action Booms Model,
there is peak oscillation— market valuations tend to totter before collapse.9

During the correction and terminal phases of the bubble, the wiggling dampens
as mispricing converges toward zero.

The Price Bubbles Model also implies event-based return predictability. One
reason for this is standard: firms may systematically undertake certain actions
in response to mispricing, such as a new issue when b > 0 and a repurchase
when b < 0. Furthermore, even for news events that do not depend on b, under
appropriate parameter conditions there is on average postevent return contin-
uation. Intuitively, public news events only partially correct misvaluation. So
variation in b generates similar variation in both corrective event-date reac-
tions and corrective postevent returns.

The smoothed expected price path, conditional on b, is similar to the hump-
shaped or U-shaped impulse response functions that generate momentum
and reversal in some behavioral models (e.g., Daniel, Hirshleifer, and Sub-
rahmanyam (1998)). The randomness of b promotes positive comovement in
returns that are separated by short time lags, and negative comovement in re-
turns that are separated by longer lags, so that they lie on opposite sides of the
hump- or U-shape. Furthermore, the oscillatory dynamics of the model—the
high-frequency zigzags in price—suggest that under appropriate parameter
values, serial correlations may be negative at short lags.

A. The Basic Setting

I now present explicitly the model introduced in the previous pages. I first lay
out the assumptions common to the Action Booms and Price Bubbles models.
Proofs are in the Appendix.

Agents, Actions, and Payoffs
At each continuous date s ∈ [0, T ), each agent from a continuum i ∈ [0, 1]

undertakes some action with intensity θ i
s . The common payoff per unit of the

action is

X ∼ N
(

X,
1
τ X

)
,

where τ X is the precision of X, defined as the reciprocal of the variance. As seen
in the timeline in Figure 4, the payoff is realized and received at finite date
T . In the context of security trading, X is the terminal dividend of the risky
asset.

9 Barberis et al. (2018) offer a model of wavering of investor beliefs at the peak of bubbles.
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T−2
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T−1
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X

Random meetings to share signals

Action (e.g., trading)

Figure 4. Timeline of payoffs for the basic setting of Action Booms and Price Bubbles
Models. At each continuous date s ∈ [0, T ), each agent i chooses the level of an action with intensity
θ i

s . Each agent is endowed with one private signal Si at date 0. Agents are randomly drawn in
pairs in continuous time to meet and share private signals. At each discrete date agents receive
public signals SP

t . The payoff X per unit of the action is realized and received at finite date T . In
the context of security trading, X is the terminal dividend of the risky asset.

Signals
At date 0, each agent i directly obtains one private signal about X, of the

form

Si = X + εi, εi ∼ N
(

0,
1
τ S

)
,

where τ S is the precision of the private signal.
Agents also receive public signals, denoted by a P superscript, at discrete

dates t = 0, 1, 2, . . . T − 1. These signals satisfy

SP
t = X + εP

t , εP
t ∼ N

(
0,

1
τ P

t

)
,

where τ P
t is the precision of the date-t public signal, and by convention unsub-

scripted τ P ≡ τ P
0 .

The new public signals arriving at each discrete date t < T are assumed to
have growing precision in such a way that the total precision of the history of
public signals grows exponentially at rate ζ > 0,

τ Z
s = eζ�s�τ P, 0 ≤ s < T , (1)

where the floor function indicates the greatest integer less than or equal to s.
This is much like assuming that newly arriving public signals have exponen-
tially growing precision.10 An alternative to this assumption is to assume that
each agent is also endowed with an unbiased but low-precision signal, and that
the percolation process for unbiased signals has a greater meeting rate than
for biased signals. In such a setting, unbiased signals would have little effect at

10 There is full resolution of uncertainty (infinite precision) at terminal date T , so exponentially
growing precision partially smooths the rate at which uncertainty is resolved over time.
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first, but as in Aesop’s fable of the tortoise and the hare, they would eventually
outrace biased percolation.

Meetings and Biased Signal Transmission
Agents are selected randomly to meet in pairs and share private signals

through conversation in continuous time. In each meeting, agents exchange
biased summaries of their accumulated signals. We can view signals as trans-
mitted either by physical meetings, or in a process in which bloggers randomly
see each other’s posts at different moments in time.11

Objective and Constraints
At each date s, agents choose how much of the action, θ i

s , to undertake. The
cost per unit of the strategy is vs units of date-T consumption. In the Action
Booms Model, vs = v, an exogenous constant, where X > v > 0.

At each date 0 ≤ s < t in continuous time, agent i myopically maximizes an
exponential utility function,

max
θ i

s

E

[
−e−γ Wi

T |	i
s

]
subject to

Wi
T = Wi

s + θ i
s(X − vs), (2)

as if this were the last action the agent would ever take.12 Here, γ is absolute
risk aversion, and Wi

s is the agent’s wealth. Wealth is defined as either the
date-0 endowed claims upon date-T consumption, or, in a market setting, the
total market value at date s of the agent’s safe and risky claims denominated in
date-T consumption.13 The investor’s information set 	i

s includes the private
and public signals the agent has received. As is standard under normality
and exponential utility, there is a mean-variance conditional expected utility
function. So agent i’s optimal action is

θ i
s = E

[
X|	i

s

]− vs

γ V(X|	i
s)

, (3)

where V denotes variance.

B. Meeting Regimes, Signal Accumulation, and Average Beliefs

The Meeting Regimes and Transmission Bias
When two agents meet, they exchange messages about their accumulated

private signals. With a continuum of agents and Gaussian learning, as in past

11 In a “blogger” setting, each “meeting” would have only one-way information transmission, but
that distinction is not important for the qualitative nature of the results.

12 Myopic optimization is algebraically convenient, and is perhaps more realistic than the op-
posite extreme of rational dynamic optimization. Also, since rational dynamic models generate
closed-form solutions with convenient properties, similar conclusions to those that I derive may
apply with forward-looking agents.

13 Owing to the CARA (exponential) utility assumption, the value of Wi
s is irrelevant for the opti-

mal action level, so I omit the details of its stochastic dynamics for case of the Price Bubbles Model.
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percolation models, the cross-population distribution of the number of signals
possessed by different agents evolves deterministically over time. As the per
capita average number of signals increases, agents can become better informed.

Unfortunately for the agents, in my model these signals are biased, and all
agents think that the messages they receive are unbiased. Specifically, the
sender of a report adds a bias of size b to the mean of the sender’s signal
batch each meeting. This would occur, for example, with one bias added to each
of the signals. This can be referred to as full-batch transmission bias. Since
meetings occur repeatedly, bias is amplified recursively. This transmission as-
sumption reflects the fact that sometimes people are surprisingly credulous
about favorable reports as excitement grows. The bias b is a random variable
with E[b] > 0 that is realized at date 0, where b is independent of all other
exogenous variables.

For tractability, I further assume that at any date, only pairs of agents with
the same number of signals are drawn to meet. This assumption is relaxed
in a version of the model analyzed in the Internet Appendix.14 A tendency to
interact with similar others is called homophily.15 Here, homophily by signal
count causes the number of signals possessed by each agent to double with
each meeting.

After percolation has proceeded for some time, so that the per capita signal
count is large, adding a bias to the agent’s entire batch of signals is, in a sense,
a much stronger distortion than biasing a few signals. This raises the ques-
tion of how robust the conclusions are to milder assumptions. In the Internet
Appendix, I analyze an alternative possibility whereby at every meeting the
sender of a batch of signals adds an additional bias of b to just one of the signals
in this batch—single-signal transmission bias. This severely limits recursive
amplification of bias. Almost all of the qualitative conclusions derived here ap-
ply in this setting as well (with no need for the homophily assumption), except
that booms and busts are no longer of potentially unlimited magnitude.16

The Information in Private and Public Signals
Let ni

s be the running total number of private signals possessed by agent i
at date s about the value of the action, X, 0 ≤ s < T , where ni

0 = 1 for all i. Let
Sij denote the value of the jth signal about X obtained by agent i through date
s, exclusive of any biases that are added to signals during the sharing process,
j = 1, . . . , ni

s. Let Sbij be the signal inclusive of biases.
Let 
ni

s be the number of signals that agent i obtains about X conditional
upon i having a meeting at date s. For s ∈ (0, T ), the average signal value,

14 The Internet Appendix is available in the online version of this article on The Journal of
Finance website.

15 Cujean (2020) also models homophily in information percolation and securities trading.
16 A technical advantage of either the homophily assumption or single-signal transmission bias

is that the number of biases that an agent has is a single-valued function of the number of signals.
This reduces the dimensionality of the evolution of signals and biases. With regard to recursive
amplification of bias, an interesting further direction would be to model an intermediate case in
which the compounding of b-bias per signal in the population is concave, but is not bounded above
at one bias per signal. This would still allow for “beyond all reason” bubbles.
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inclusive of biases, obtained by receiver i about X in a meeting at date s, if such
a meeting occurs, suppressing s subscripts, is

Y i ≡ 1

ni


ni∑
k=1

Sb,i,k+ni
− , (4)

where the “−” subscript denotes the number of signals possessed the instant
(in a limiting sense) before the meeting at date s. Let the debiased mean of the
signal batch be denoted by Y i(b = 0). With Gaussian distributions, a sufficient
statistic for the information in a batch of signals acquired in a meeting is the
total number of signals and their debiased mean, (
ni, Y i(b = 0)).

I denote the average of the private signals accumulated by agent i through
date s, inclusive of biases, as

Y
i
s =

∑ni
s

j=1 Sbij

ni
s

. (5)

The precision-weighted average of the public signals through discrete date t
is

Zt ≡
∑t

r=0 τ P
r SP

r∑t
r=0 τ P

r
. (6)

For continuous date s, equation (6) holds with t replaced by s on the left-hand
side (LHS) and by �s� on the right-hand side (RHS).

C. Population Dynamics of Signal and Bias Counts

Owing to the continuum of agents assumption, as in previous percolation
models, the probability that a given agent’s meeting lineage ever overlaps with
that of another given agent is zero. This allows a law of large numbers to be
applied to matching outcomes (see Duffie and Sun (2007)).

Let μs(n) and μR
s (n), respectively, be the perceived and actual cross-sectional

distribution of agents at date s who possess n private signals about the payoff,
where the R superscript denotes a rational perception. The Poisson arrival rate
for meetings is η > 0, but agents perceive this to be κη, where κ > 0, with an
emphasis on the case κ ≤ 1. Owing to the perfect homophily assumption, the
support of μs(n) is {n : n = 2k, k ∈ N

0}.
Let the perceived and actual per capita number of signals in the population

at date s be

φs ≡
∞∑

n=1

nμs(n)

φR
s ≡

∞∑
n=1

nμR
s (n), (7)
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where the R superscript (for “Rational”) highlights that an expression is based
on a rational perception, and where μs and μR

s are the perceived and actual
distributions of agent signal counts in the population.

To compare against the benchmark of unbiased updating, we count the
number of biases per signal as batches get transmitted and bias accumu-
lates. We call a signal r-biased if its value is Sk + rb = X + εk + rb, where r
is a positive integer, and where agent k is the original holder of signal with
value Sk.

Let nbi
s be the number of b biases in an agent’s signal set at date s. For

example, if the agent has a total of one 1-biased signal and one 2-biased sig-
nal, then nbi = 1 + 2 = 3. Agent i’s number of biases per signal (the per-signal
bias count) is defined as f bi

s ≡ nbi
s /ni

s. Let the per-signal bias be the product
bf bi

s .
Let νs(nb) be the frequency across the investor population of the number of

biases nb possessed by investors. Let f b
s be the per-signal bias count over the

whole economy, defined as the ratio of the per capita number of signal biases
to the per capita number of signals,

f b
s ≡

∑∞
nb nbνR

s (nb)
φR

s
. (8)

Let Ns be the number of meetings an agent has experienced by date s. Agents
perceive that this has a Poisson distribution, Ns ∼ Pois(ηκs), while in reality,
κ = 1. The number of signals and the per-signal bias of an agent turns out to
be an increasing function of the number of meetings that the agent has had.
Based on this fact, we can also derive the population evolution of signals and
biases as a function of time.

PROPOSITION 1: At date s:

(1) Agents perceive the per capita number of signals in the population to be
φs = eηκs. The actual per capita number is eηs.

(2) The aggregate per-signal bias count is f b
s = ηs.

(3) The perceived cross-sectional distribution for the number of signals pos-
sessed by agents in the population is

μs(n) = (ηκs)log2ne−ηκs

(log2n)!
, (9)

n ∈ {2N}N=0,1,...∞, where N is the number of meetings experienced by an
agent with n signals. The actual distribution has κ = 1.

From Proposition 1, we see that per-signal bias count increases linearly with
time and therefore is unlimited. With recursive amplification of bias, there is
explosive growth in the total number of biases in the population that is only
partly offset by the exponential growth in the total number of signals.
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D. The Action Booms Model and b-Bias

In the Action Booms Model, for simplicity there is no learning from observ-
ing aggregate actions or their consequences. In many applications, such as
acquisitions, there is such observation, as reflected in models in which agents
learn from an aggregate summary statistic of past actions (e.g., Bikhchandani,
Hirshleifer, and Welch (1992)) or in rational expectations models in which in-
vestors learn from securities prices. The basic insights I wish to provide about
biases in learning from aggregate consequences (κ bias effects) are captured
in the Price Bubbles Model of Section IV.E. However, in some practical con-
texts aggregate consequences have low visibility or are observed very noisily,
limiting such learning.

D.1. Belief Updating with Learning from Private and Public Signals

Under Gaussian updating, for a rational agent with n private signals and a
set of public signals with total precision τ Z, the conditional precision of X is τ X +
nτ S + τ Z. The conditional expectation of X given private signals with average
value Y and public signals with average value Z places weights in proportion
to the relative precisions of these signals. These precisions are identical for
a biased agent and for a rational observer. So the signal weights, written as
functions of dummy inputs, are

λX(n, τ S, τ X, τ Z) ≡ τ X

τ X + nτ S + τ Z

λP(n, τ S, τ X, τ Z) ≡ τ Z

τ X + nτ S + τ Z

λS(n, τ S, τ X, τ Z) ≡ nτ S

τ X + nτ S + τ Z . (10)

Everyone correctly understands that these are the weights that everyone uses
to form their updates. When applied to a biased or unbiased average of signals,
these weights generate a biased or rational expectation of the fundamental.
Let Y be the agent’s average private signal inclusive of biases. Since the agent
believes these biases are zero, the agent believes the expected fundamental
to be

E

[
X|Y , n; Z, τ Z

] B=
(

τ X

τ X + nτ S + τ Z

)
X +

(
nτ S

τ X + nτ S + τ Z

)
Y +

(
τ Z

τ X + nτ S + τ Z

)
Z,

(11)

where B (for “bias”) denotes an equality that is incorrectly perceived by an agent
to hold.
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D.2. Optimal Action and Aggregate Action

The average signal error of an agent i with n private signals is

εi ≡ 1
n

n∑
j=1

εi j . (12)

By optimal action condition (3), and suppressing s subscripts, agents perceive
the condition for an optimum to be

γ
(
τ X + nτ S + τ Z

)−1
θ i = E

[
X|	i]− v

B= λXX + λSY
i + λP Z − v

B=
(

τ X

τ X + nτ S + τ Z

)
X +

(
nτ S

τ X + nτ S + τ Z

) (
X + εi)︸ ︷︷ ︸

perceived unbiased

+
(

τ Z

τ X + nτ S + τ Z

)
Z − v. (13)

Since the signals that agents obtain are biased, their optimized positions actu-
ally satisfy

γ
(
τ X + nτ S + τ Z

)−1
θ i =

(
τ X

τ X + nτ S + τ Z

)
X +

(
nτ S

τ X + nτ S + τ Z

) (
X + εi + bf bi)︸ ︷︷ ︸

biased

+
(

τ Z

τ X + nτ S + τ Z

)
Z − v. (14)

Solving for agent i’s actual position gives

θ i = τ X(X − v) + nτ S
(
X + εi + bf bi − v

)+ τ Z(Z − v)
γ

. (15)

So b bias boosts optimism and action (when b > 0) as reflected in the per-signal
bias bf bi, which grows recursively as increasingly biased signals are exchanged.

Aggregating across agents in the population gives the true aggregate action.

PROPOSITION 2: In the Action Booms Model, the aggregate action �s satisfies

�s = τ X(X − v) + φR
s τ S

(
X + bf b

s − v
)+ τ Z

s (Zs − v)
γ

. (16)

Taking the expectation gives the expected aggregate action path conditional
on b,

E
R[�s|b] = (τ X + τ Z

s + φR
s τ S)(X − v) + φR

s τ Sbf b
s

γ
, (17)
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where X − v > 0. This depends on the actual per capita signal count φR
s , not on

the perceived count φs as biased by κ. Since there is no observation of, nor learn-
ing from, aggregate consequences in the Action Booms Model, misperception of
the meeting rate has no effect on beliefs andoutcomes.

When b > 0, social interaction drives overoptimism, and when b < 0, it
drives overpessimism. Since these effects derive from social interaction, a
testable implication is that more social agents are especially prone to bubble
exuberance.

PROPOSITION 3: In the Action Booms Model, consider a deviant agent i who is
more sociable than others, that is, has a meeting rate η′ > η. Then if b > 0,
agent i’s action is on average above the per capita action, E

R[θ i
s |b] > E

R[�s|b].
The reverse is the case if b < 0.

Since action can positively or negatively boom even under full rationality,
I focus on the percentage deviation of the expected aggregate action from the
rational benchmark. This benchmark is the expected aggregate action if there
were no transmission bias, b = 0 in (17). So the excess action is


�s(b) ≡ E
R[�s|b] − E

R[�s|b = 0]
ER[�s|b = 0]

= φR
s τ Sbf b

s

(τ X + φR
s τ S + τ Z

s )(X − v)
. (18)

To describe this action path, I substitute the percolation dynamics for the
number of signals and the per-signal bias count into (16) through (18). Substi-
tuting for φR

s and f b
s from Proposition 1 and for τ Z

s from (1) gives


�s(b) = eηsτ Sbηs

(τ X + eηsτ S + eζ�s�τ P)(X − v)
. (19)

To build intuition about the excess action path, suppose that public news
arrives continuously. Then relative to (19), the jumps in precision are smoothed
away, with public precision path τ Z

s = eζ�s�τ P replaced by

τ̂ Z
s ≡ eζ (s−0.5)τ P . (20)

A steady contributor to action booms here is the linear increase in per-signal
bias as a function of time (Proposition 1). So focusing on the b > 0 case, the
average bias in expectations can become arbitrarily large until opposed by
some countervailing force. Here that force is an initially slow but acceler-
ating rise in total public signal precision. Growth in per-signal bias affects
beliefs and actions slowly at first, because with only a few signals, updating
is weak relative to the prior. Updating then accelerates, owing to exponen-
tial growth in the per capita number of signals, φs. Together with rising per-
signal bias, there can be, for a time, explosive growth in overoptimism and
action.

If public signal precision takes long enough to have substantial force, ac-
tion boom expectations about the fundamental come close to asymptoting to a
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positively sloped straight line. This line reflects the linear increase in per-signal
bias. With enough signals, the prior is swamped—expectations are dominated
by the average of the biased private signals. Even a large increase in the num-
ber of signals no longer causes much further updating per se. Rather, further
updating comes mainly from the rising per-signal bias.

Eventually, public signals, as reflected in Z, force correction, owing to the
assumed exponential growth rate (with high enough exponent) in public signal
precision τ Z. So there is a boom and bust in the excess expected aggregate
action 
�s.

In the benchmark, for comparison, as s grows, there would be a rational
positive (if X > v) or negative (if X < v) boom even when b = 0. The b bias
induces large temporary swings away from this rational path. In summary,
when b > 0 the trajectory of the excess action is hump-shaped, and when b < 0
it is U -shaped.

What about the unsmoothed excess action path? Since public information
actually arrives discretely, the excess action path oscillates. Intuitively, when
b > 0, at each date t on the lattice t = 1, 2, . . . , T − 1, the public signal on
average partly corrects overoptimism, so that the aggregate excess expected
action drops discretely. Percolation then on average causes the aggregate action
to recover until the next lattice date arrives.

The Internet Appendix provides a figure describing the excess action in the
Action Booms Model. As in Figure 3 for the Price Bubbles Model, the ampli-
tude of oscillations is very strong near the peak, as the boom loses impetus.
Intuitively, for a boom to grow quickly, the expected decreases in excess ac-
tion coming from public news arrival dates need to be small relative to the
percolation-driven expected increases. For a boom to reach its peak, the drops
deriving from public news arrival must grow to be comparable in size to the
biased-percolation-driven increases, implying large zigzags. As in Figure 3,
vigorous oscillation can persist until the accumulated precision of public infor-
mation starts to overwhelm biased percolation. As this occurs, the percolation-
driven recoveries are dampened. This stabilizes the excess action path closer
and closer to zero in the terminal phase of the action boom. I call this pattern
peak oscillation. (It is equally “trough oscillation,” since it occurs in mirror
reflection near the trough of a negative boom, b < 0). It would be valuable to
test empirically the prediction that action booms are characterized by peak
oscillation.

E. The Price Bubbles Model and κ Bias

Suppose next that there is a centralized asset market with supply noise,
and that investors draw biased inferences from market price. If investors un-
derestimate (for example) the extent to which other agents meet and share
private information—κ bias—they will underestimate the informativeness of
the market price, which encourages excessive trading. There is also an inter-
play between b bias, trading, and mispricing.
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E.1. Belief Updating with Mislearning from Price

Let aggregate supply of a risky asset be distributed normally,

� ∼ N
(

�,
1
τ�

)
,

with precision τ�. Unlike the Action Booms Model, � is time-independent.
Without loss of generality, for algebraic convenience I now set X = 0.

Suppose that at each date agents forget the past history of prices, and form
beliefs based solely on the current price (together with the full history of private
and other public signals).17 Together with myopic optimization, this implies
that at each date we can solve for a two-date trading equilibrium. It is standard
in rational expectations models to conjecture and verify an equilibrium price
function that is linear in the fundamental and the supply noise. In my setting
price also depends on the average public signal and on the per-signal bias, bf b

s :

vs = αRX
s X + αRP

s Zs + αR�
s � + αRb

s bf b
s . (21)

Here R indicates that this is the pricing function from the viewpoint of a ratio-
nal observer. Since agents in the model are unaware of b bias, their perceived
pricing function is

vs
B= αX

s X + αP
s Zs + α�

s �, (22)

where the values of these alphas differ from the values of the corresponding
rational alphas in (21).

I define the normalized price signal as

ξs ≡ vs

αX
s

−
(

αP
s

αX
s

)
Zs

B= X +
(

α�
s

αX
s

)
�, (23)

where the second equality in (23) is perceived by investors to hold based on
the incorrect pricing coefficients of (22). Conditional on X, agents mistakenly
perceive that

ξs
B∼ N

(
X,

(
α�

s

αX
s

)2 1
τ�

)
, (24)

so agents view ξ as another signal of the form “X plus independent noise.”
By normality, the perceived variance of the fundamental, X, conditional on
observing n private signals with precision τ S, public signals with total precision
τ Z, and the normalized price signal with precision τ ξ is

o(n, τ S, τ X, τ Z, τ ξ ) ≡
(
τ X + nτ S + τ Z + τ ξ

)−1
, (25)

where the actual precision of the normalized price τ Rξ �= τ ξ .

17 Though unrealistic, the forgetting assumption suffices to illustrate some basic concepts simply.
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By normality and the equilibrium price conjecture, an investor who updates
based on n private signals about X with average value Y , public signals with
average value Z, and one normalized price signal ξs weights these signals by
their perceived relative precisions. These precisions are assessed without bias,
except for that of the price signal. I omit the s subscripts and view these weights
as functions of dummy inputs:

λP(n, τ S, τ X, τ Z) ≡ τ Z

τ X + nτ S + τ Z +
(

αX

α�

)2
τ�

λS(n, τ S, τ X, τ Z) ≡ nτ S

τ X + nτ S + τ Z +
(

αX

α�

)2
τ�

λξ (n, τ S, τ X, τ Z) ≡
(

αX

α�

)2
τ�

τ X + nτ S + τ Z +
(

αX

α�

)2
τ�

. (26)

These coefficients depend on time through their dependence on n and τ Z.
The above weights give an agent’s biased conditional expectation of the fun-

damental. Agents mistakenly assess the conditional expectation of X to be

E

[
X|Y , n; Z, τ Z; v

] B= λS(·)Y + λP(·)Z + λξ (·)ξ. (27)

Everyone correctly understands the weights that are used by everyone else to
update their beliefs given signals and price. Substituting agents’ equilibrium
price conjecture (22) into (26) and (27) gives their perception of how beliefs
depend on fundamentals X, supply shock �, and signal realizations.

E.2. Optimal Positions and Market Clearing

To pin down the equilibrium pricing parameters, I solve for optimal positions
and impose market clearing. I first use these conditions to derive the perceived
pricing function, which is only perceived by agents to be self-confirming. I
then derive the actual pricing function, which is actually self-confirming given
agents’ misperceptions.

E.3. Agents’ perceived pricing function

Since investors think they are in a rational expectations setting, we can solve
for their perceived self-confirming expectations in a standard way. Investors’
expectations can be substituted into the investor optimality condition (3), to-
gether with the perceived conditional precision of the fundamental from (25).
Integrating over investors (based on their perceptions of the distribution across
the investor population of the number of private signals), the market-clearing
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condition for the asset pins down the coefficients of the perceived pricing
function.

PROPOSITION 4: In the Price Bubbles Model, the coefficients on the fundamental,
the supply noise, and the public signal in the agents’ perceived equilibrium
pricing function (22) are

αX
s = φsτ

S(γ 2 + φsτ
Sτ�)

(φsτ S)2τ� + γ 2
(
τ X + φsτ S + τ Z

s

) (28)

α�
s = − γ (γ 2 + φsτ

Sτ�)
(φsτ S)2τ� + γ 2

(
τ X + φsτ S + τ Z

s

) (29)

αP
s = γ 2τ Z

s

(φsτ S)2τ� + γ 2
(
τ X + φsτ S + τ Z

s

) . (30)

The pricing coefficients are time-dependent, since the per capita signal count,
φs, and the public signal precision, τ Z

s as given in (1), are increasing with
time. The market-clearing condition aggregates over investors, as their first-
order conditions are linear in their numbers of private signals (see the proof of
Proposition 4). So by market clearing, the price coefficients are functions of the
per capita signal count in the population, φs.

E.4. Actual Trading and Equilibrium Prices

The perceived α coefficients describing the dependence of price vs on state
variables are incorrect. To pin down the coefficients of the true pricing function
as given in (21), I again impose market clearing. The solution procedure takes
into account the fact that investors’ optimized positions reflect their incorrect
perceptions of several variables and the parameters of the pricing function.
So in using the first-order condition for optimal investor trades, we must not
replace the subjective α’s with the correct ones. We must substitute out for mar-
ket price in (A9) using the true pricing function in (21). We must also replace
the mistaken perception of each agent’s average private signal value, X + εi

s,

with its true value Y
i
s = X + εi

s + bf bi
s . Also, when κ �= 1, agents’ perceived ag-

gregate signal count differs from the actual, as the agents misestimate the
meeting rate.

PROPOSITION 5: In the Price Bubbles Model, the market price in (21) is

vs(X, Zs,�, b) = τ Z
s γ 2 Zs + (γ 2 + φsτ

Sτ�)[φR
s τ S(X + bf b

s ) − γ�]
γ 2(τ X + φR

s τ S + τ Z
s ) + φsφR

s (τ S)2τ�
, (31)

where the coefficients on X, bf b
s , Zs, and � are the α coefficients in the true

equilibrium pricing function (21).
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Equating the corresponding coefficients in (31) and the equilibrium pricing
function (21) gives the true equilibrium pricing function in terms of exogenous
parameters and the perceived and actual per capita signal counts φs and φR

s .
Taking ratios of the corresponding alpha coefficients αR/α, true versus as per-
ceived by agents in the model, reveals that if κ < 1, the true coefficients place
greater weight on X and lower weight on the average public signal, Zs, and �.
Owing to κ bias, agents underestimate how much information about X is im-
pounded into price, and correspondingly overestimate the dependence of price
on public signal noise and on the supply shock.

PROPOSITION 6: In the Price Bubbles Model, if κ < 1, then αRX
s > αX

s , αRP
s < αP

s ,
and αR�

s < α�
s for all 0 < s < T . If κ > 1, the inequalities are reversed.

E.5. Bubble Price Dynamics

The biased percolation model captures several features of asset market trad-
ing, mispricing, and bubble episodes.

Bubble Phases
Market price is stochastic owing to supply shocks and the randomness of the

public signal realizations. Taking the expectation of (31) conditional upon b,
the true expected price dynamic is

E
R[vs|b] = (γ 2 + φsτ

Sτ�)φR
s τ Sbf b

s

γ 2(τ X + φR
s τ S + τ Z

s ) + φsφR
s (τ S)2τ�

. (32)

The per capita number of signals is a determinant of the market price (see
also Andrei and Cujean (2017), Cujean (2020)). The biased percolation process
determines the increase over time in signal counts φR

s and φR
s and in per-signal

bias bf b
s in (32).

Over time, percolation shifts the distribution toward higher per capita sig-
nal counts, both perceived and actual, φs and φR

s , in the sense of First-Order
Stochastic Dominance. Intuitively, when b > 0, higher φR

s increases the market
price, because a larger number of signals, as reflected in φR

s , causes stronger
impounding of the growing per-signal bias, as reflected in f b

s , into price. This
amplification of bias over time is reflected in the b term in the numerator.

It is evident that expected price is increasing with the size of the bias, b.
Indeed, when b = 0 the expected price is zero, so unconditionally, κ bias does
not induce price bubbles on average. For b > 0, it is evident that expected price
is at first increasing with time, since v0 = 0, whereas E

R[vs|b] > 0 when s > 0
(since φs, φR

s , f b
s > 0 when s > 0).

Focusing on b > 0, to describe the curvature of the expected price path, con-
sider the smoothed version of the path of public signal precision as in (20).
Under appropriate parameter values, as depicted in Figure 3, the expected
price dynamic in (32) has four phases, as described earlier, though of course re-
alizations are very different from expectations. If, as is realistic for many asset
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markets, there are costs associated with or constraints on short-selling, positive
bubbles (the b > 0 case) will tend to be more pronounced than negative ones.

What causes the rise and fall in expected price? During the inception phase,
recursive amplification of bias causes growth in expected price to accelerate.
To build intuition from equation (32), first treat τ Z

s as approximately constant.
The slow initial growth in expected price is reflected in the numerator by the
fact that in the term in parentheses, φsτ

Sτ� is at first small relative to γ 2,
so that there is only a modest effect of an increase in φs on the overall ratio
(bearing in mind that the coefficient on this term and the denominator are also
increasing with time). As φs grows exponentially, its effect intensifies.

As s grows (still treating τ Z
s as approximately constant), the terms in the

numerator and denominator containing the product φR
s φs in (32) dominate.

This reflects a high degree of certainty of investors who have accumulated
many private signals, which leads them to incorporate per-signal bias bf b

s
almost completely into price. Owing to biased information percolation, this is
linearly increasing with time (Proposition 1, Part 2). So the expected price is
convex at first, but this acceleration ends eventually. Indeed, since τ Z

s grows
exponentially (with a sufficiently high exponent), public information arrival
eventually overwhelms mispricing and correction ensues.

Ceteris paribus, higher κ (meaning lower κ bias) increases perceived per
capita signal count φs. The partial derivative of the RHS of equation (32) with
respect to φs is negative, so greater κ tends to attenuate (but cannot eliminate)
the price effects of b bias. When κ is higher (lower κ bias), investors think price
is more informative, so their trades weight their private signals less. So price
reflects less b bias, reducing the bubble.

Market Reactions to Public News Events
Owing to mispricing, during bubbles the returns on the dates of foreseeable

news arrival are predictable, even without conditioning on the value of the
event realization.

PROPOSITION 7: In the Price Bubbles Model, when b > 0, on average the price
drops discretely when the date-t public signal arrives, t ≥ 1. The opposite is the
case when b < 0.

Intuitively, b > 0 on average temporarily results in growing overpricing over
time as signals are shared with bias. Public news arrival partly corrects over-
pricing at each date. When b < 0, public news partly corrects underpricing.
(The b > 0 implication would be modified if there were a positive expected sup-
ply of the asset, which would incrementally induce a positive announcement
date risk premium.) To empirically test these predictions, the sign of b, that
is, whether the asset is in an upward or downward bubble, can be proxied by
price run-ups or run-downs not justified by fundamentals, that is, run-ups in
value proxies.

This return predictability does not derive from a general propensity to misin-
terpret value-relevant information signals, as in models of investor overconfi-
dence or limited attention (Hirshleifer and Teoh (2003), Peng and Xiong (2006)).
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This predictability instead derives from investor misunderstanding of the so-
cial transmission process. This is also true of the return anomaly predictions
of Section IV.E.6.

When b > 0, the price drops in the model suggest that there is some truth
to the Wall Street adage, “Buy on the rumor, sell on the news.” This reflects
the idea that favorable rumors about a stock cause its price to rise, but that
when reliable information arrives it tends to disconfirm the rumor, correcting
price downward. Aboody, Lehavy, and Trueman (2010) provide evidence sug-
gesting that earnings news has a downward corrective effect on stocks that
have experienced run-ups.18

Peak Oscillation and Dead Cat Bounce
As illustrated in Figure 3, the model can generate predictable oscillations

that, on average, intensify near the peak of the bubble and augur its collapse.
There is a natural tottering of market valuations at the peak of a bubble before
corrective forces come to dominate. Even in the terminal phase of the bubble,
there is zigzagging, albeit less extreme, along the journey to zero—“dead cat
bounce.”

Intuitively, as discussed earlier, in the inception phase of the bubble, there
is accelerating expected price growth. In the limit as time becomes large, if
there were no public information arrival, the system would asymptote toward
an increasing straight line. That line reflects certainty on the part of investors,
based on sharing many signals, that the value of the fundamental is X + bf b

s ,
the sum of the true fundamental and the per capita per-signal bias. Expected
valuations would in principle increase without limit.

Public signals arrive with exponentially growing precision. If, as I assume,
the growth rate for public precision is high enough, investors’ optimistic faith in
their biased private information is eventually challenged. There is, on average,
a price drop on each discrete news arrival date, followed by recovery toward
the peak owing to biased percolation and new meetings. As public information
becomes more conclusive, the recovery curves successively flatten and the bub-
ble collapses. The bubbly effects of biased percolation never completely vanish,
however, so diminishing oscillations continue along the expected price path as
it approaches zero.

Trading Statics and Dynamics
Both κ bias and b bias introduce irrational motives for trading. This provides

a new perspective on empirical findings that investors trade actively and lose
money thereby (Barber and Odean (2000)). Even when there is no direct be-
havioral bias, such as overconfidence, “for” excessive trading, social processes
can attract investors to this behavior (see also Fable 2).

18 These authors find that on average price rises in the lead-up to earnings announcement
dates and drops immediately following them, after conditioning on longer term past price run-
ups. Average run-ups are indeed a feature of the b > 0 case, which precedes a more rapid run-up
near the public news event and subsequent reversal. However, the walkdown by analysts toward
beatable forecasts also induces other return patterns over the earnings cycle (Richardson, Teoh,
and Wysocki (2004), Linnainmaa and Zhang (2019)).



1806 The Journal of Finance R©

If κ < 1 (my focal case), investors underestimate the per capita number of
private signals, φs, that are reflected in price. This results in underweighting of
price in forming beliefs, which favors extreme expectations and willingness to
take bets against the market. At date 0, there is no such underestimation since
there have been no meetings. So underweighting of the private information in
price becomes more severe over time. At least for a time, as a bubble grows,
speculative trading increases. Eventually, the bubble corrects and disagree-
ment dissipates. So eventually speculative investor trading declines toward
zero, and investors just absorb the supply shock.

The underweighting of the information in market price is akin to cursedness
as in Eyster, Rabin, and Vayanos (2018), that is, investor neglect of the extent
to which the actions of others reflect private information. Here the under-
weighting of others’ information is endogenous. Investors underestimate how
informative price is because they do not realize how often others are meeting
to exchange signals. The model therefore describes the conditions under which
people impute too little information into price versus too much (which would
occur when the meeting rate is overestimated, κ > 1). Furthermore, the biased
percolation approach suggests that such effects are modulated by the other
parameters of the social interaction process, such as the intensity of social
interaction (as reflected in the meeting rate η).

The b bias further contributes to investor disagreement. Over time there
is a tendency for signal counts ni

s and per-signal biases bf bi
s to become more

dispersed as investors randomly experience different meetings and acquire dif-
ferent numbers of private signals. This is reflected in the true cross-population
signal count distribution (with κ = 1) in equation (9). By part 3 of Proposition 1,
the distribution of the number of meetings N across investors is Pois(ηs), so
the mean and variance are proportional to time, s. So a higher s also tends to
spread the distribution of the number of signals, n = 2N.

Greater dispersion across investors in their signal counts also tends to
increase the cross-investor dispersion in per-signal bias, since an investor’s
per-signal bias is linearly increasing in the investor’s signal count (Proposi-
tion 1). As dispersion in per-signal bias accumulates, highly biased investors
are motivated to buy (if, e.g., b > 0) from low-bias investors. Furthermore,
the growing number of signals over time increases an investor’s confidence in
the investor’s (biased) average signal value, further encouraging speculative
trading.

However, owing to public news arrival and the impounding of private infor-
mation into market price, eventually disagreement must decline. So eventually,
as the bubble loses impetus, open interest and trading volume decline. Accord-
ingly, there is a rise-and-fall path for trading in a bubble analogous to the path
for expected price. An interesting further direction would be to develop and
contrast the implications for volume and price volatility of the biased informa-
tion percolation approach to dynamic models of asymmetric information under
rational updating (He and Wang (1995)).



Presidential Address: Social Transmission Bias 1807

E.6. Return Anomalies

Biased information percolation induces other patterns of abnormal return
predictability, trading, and expectations based on both public news events and
past returns.

Event-Based Return Predictability
Public news events positively predict future abnormal security returns. At

the discrete arrival date t of a public signal, when b > 0, the stock is on average
overpriced and the public news tends to correct it downward (Proposition 7).
But on average the correction is only partial, resulting in a negative postevent
long-run expected return. Symmetrically, when b < 0, on average the public
news exceeds expectations and is followed by a positive postevent expected
return. I describe this effect in terms of price reactions. Let the event-date
price change be 
vt ≡ vt − vt−, where t− denotes a time just before date t.

PROPOSITION 8: Conditional on b, after the arrival of the date-t public signal, the
sign of the expected postevent price change through the terminal date T is the
same as the sign of the expected event-date price reaction, Sign(ER[X − vt|b]) =
Sign(ER[
vt|b]). Both expectations are negatively proportional to b.

This implication of long-horizon return continuation after public corporate
news events—that is, that when b > 0, on average the price falls on the event
date and then has long-horizon downward drift, whereas when b < 0, on av-
erage the price jumps on the event date and has a long-run upward return
drift—is consistent with the new issues puzzle (Loughran and Ritter (1995))
and the repurchase anomaly (Ikenberry, Lakonishok, and Vermaelen (1995,
2000)). These effects may be reinforced if, as evidence suggests, firms delib-
erately take informative actions in response to preexisting mispricing (Dong,
Hirshleifer, and Teoh (2012)), as reflected in b here.

The model further predicts that short-horizon postevent drift varies condi-
tionally depending on the phase of the bubble. For example, when b > 0, during
the bubble upswing a public news event is met on average with a price drop,
but is followed on average by price increases through the peak of the bubble
before eventual correction.

So an untested implication here is that conditional on being in a bubble
upswing, postearnings announcement drift (PEAD) is reversed (i.e., there is
postearnings announcement reversal), and that PEAD is especially strong dur-
ing the downward correction phase.

Arguably, firms will time IPOs when b > 0 and during the inception or boom
phases rather than the correction or terminal phases (“striking while the iron
is hot” to ensure a successful offering). So it is intriguing that after IPOs we
observe on average positive mean abnormal returns for several quarters before
the eventual long-run underperformance (Ritter and Welch (2002)).

The return predictability pattern is subtler during the correction phase of
a bubble. When b > 0, between the price drops on discrete public news dates,
percolation still promotes price increases. So there can still be reversal at very
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short horizons. However, returns over an only moderately short horizon—one
that is long enough to include the next discrete news arrival date and the
associated price drop—will exhibit postevent downward correction.

We have seen that since higher b induces preevent overvaluation, on average
it induces a lower (less positive or more negative) event-date price reaction and
postevent price drift. This suggests that when we do not condition on b, its
variability induces comovement between event-date corrective price reactions
and subsequent corrective drift. For simplicity, I show this for public news at
date 1.

PROPOSITION 9: Consider a random sample of public news events in which dif-
ferent possible realizations of b are possible. If V(b) is sufficiently large, there is
long-horizon return continuation after public news events, covR(
vt, X − vt) > 0.

Proposition 9 is consistent with PEAD, the tendency for earnings surprises
to positively predict future returns up to three quarters forward, with the
surprise measured by the market return reaction on the announcement date
(or by earnings relative to analyst forecasts, which is highly correlated).

Turning to postevent drift over a short horizon, the next proposition relies
on public announcements occurring at regular intervals, as with quarterly
earnings announcements.

PROPOSITION 10: Conditional on b, in a sample of public announcements ran-
domly selected from among the announcements at dates t = 1, . . . , T − 1, on av-
erage there is short-horizon price change continuation, Sign(ER[vt+1 − vt|b]) =
Sign(ER[
vt|b]). Both expectations are negatively proportional to b.

A favorable earnings surprise is associated with high profits, since the cur-
rent earnings level includes its latest change. So the sluggish response to earn-
ings news in the model is also consistent with the profitability anomaly—
the finding that profits are a positive predictor of future abnormal returns
(Novy-Marx (2013), Wahal (2019))—and with evidence that the profitability
anomaly is associated with sluggish updating in expectations of fundamentals
(Bouchaud et al. (2019)).

Serial Correlation of Returns
The average price trajectories after b > 0, as in Figure 3, or b < 0, are rem-

iniscent of the hump-shaped and U-shaped impulse response functions that
can generate momentum and reversal in behavioral models (see, e.g., figure 1
of Daniel, Hirshleifer, and Subrahmanyam (1998)). Intuitively, conditional on
b, the shapes of the expected price paths suggest that at short horizons high
returns tend to be followed by high returns while low returns tend to be fol-
lowed by low returns, that is, there is momentum. In contrast, with long lags,
positive price changes during the boom phase tend to be followed by negative
price changes during the correction (in the hump-shaped case), while negative
price changes tend to be followed by positive ones (in the U-shaped case).

The randomness of b tends to further promote positive autocorrelation at
short lags and negative autocorrelation at long lags. By (31), a higher positive
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value of b, for given realizations of other random variables, increases the date 0
to 1 price change, since f b

s increases from zero to a positive quantity. During the
early phase of the bubble, a similar effect promotes successive price increases at
short lags, which contributes positively to positive autocorrelation. Similarly,
during bubble correction, a higher positive value of b promotes successive price
decreases at short lags. As time increases and public precision grows, the
γ 2τ Z

s term in the denominator discounts the b term more heavily. This also
contributes to positive autocorrelation. Similar points apply to lower negative
values of b during negative bubbles.

Similar reasoning further suggests that b realizations have opposite effects
on price changes separated by long lags that cross between the upswing and
the downswing of the bubble. This suggests that randomness of b contributes
negatively to long-lag return autocorrelation.19 I formally verify the contribu-
tion of b to short-lag momentum, where for simplicity I assume that public
information arrives smoothly.20

PROPOSITION 11: Suppose that public information arrives smoothly, such that
precision satisfies τ̂ Z

s ≡ eζ (s−0.5)τ P, s ∈ [0, T ), and V(b) is sufficiently large. Then
at a sufficiently short time horizon, successive price changes are positively au-
tocorrelated.

Without smoothing, as we have seen, there is oscillation in short-horizon
conditional expected returns. The frequency of oscillation should depend on
how often public news arrives (e.g., in the form of press releases, manager
interviews, communications between investor relations staff and analysts, and
investigative reports by financial media and commentators). So an interesting
question for exploration is whether the model is consistent with the short-term
reversal anomaly of Jegadeesh (1990), along with medium-term momentum
and long-term reversal. If so, the approach may unify these seemingly disparate
serial correlation effects.

Several behavioral finance models offer explanations for return momentum
and/or reversal when agents do not talk to each other (see, e.g., Barberis,
Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998),
Hong and Stein (1999), and Duffie (2010)). Here, I offer a type of possible
explanation that is seldom considered: rather than individual-level biases for
over- or underrreaction, such as overextrapolation, overconfidence, or limited
attention, return predictability derives from biases in the social transmission
process.

The social nature of this explanation implies that return predictability de-
pends on features of the social interaction process, such as how heavily in-

19 Andrei and Cujean (2017) derive momentum and reversal in a fully rational information per-
colation setting. The imperfectly rational approach considered here addresses return predictability
as an anomaly, in the sense of generating Sharpe ratios that are extreme relative to a rational
assessment of risk. Biased percolation offers a new explanation for this quantitative puzzle.

20 For simplicity, Proposition 11 is premised on public information arriving smoothly in contin-
uous time. Conjecturally, this is much like assuming that the time horizon for the price-change
autocorrelation, while short, is not too short.
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vestors interact and how bias is generated in these communications. This
suggests looking to proxies for the extent to which people communicate through
personal meetings versus electronically, communicate in a one-to-one fashion
versus in blogs or social media, are socially connected, and bias or censor the re-
ports they make to others. The implication that social structure affects bubbles
and return anomalies deserves empirical testing.

Let the precision-weighted expectation of the fundamental in the investor
population be defined as in equation (IA.5) in the Internet Appendix. The next
proposition verifies that after a recent price run-up, investor expectations be-
come more optimistic.

PROPOSITION 12: Suppose that public information arrives smoothly, such that
precision satisfies τ̂ Z

s ≡ eζ (s−0.5)τ P, s ∈ [0, T ), and V(b) is sufficiently large. Then
at a sufficiently short time horizon, the change in the precision-weighted ex-
pectation of the fundamental X is positively correlated with the immediately
preceding price change.

(I am grateful to Yushui Shi for help with the proof, which is in the Internet
Appendix.) Intuitively, the rise-and-fall pattern of expected price suggests that
beliefs become more optimistic after price run-ups than after run-downs. Again,
the smoothness assumption seems much like assuming that the horizon is
short but not “too short.” Proposition 12 is consistent with the evidence that
forecasts are positively associated with past returns (Greenwood and Shleifer
(2014)). Here, this correlation is an emergent, noncausal effect. Agents do not
extrapolate past returns in forming their expectations. Rather, the illusion
of extrapolation is created by the biased percolation process. During the rise
of a bubble, percolation on average increases prices, and investors become
increasingly optimistic. Similarly, during the correction phase of the bubble,
correction of overpricing on average foreshadows further downward correction
in investor beliefs.

This highlights one of my key themes, which I call mimicry. In general, we
cannot infer from an individual’s behavior that there is a direct bias “for” that
behavior. Social transmission bias generates emergent outcomes that can look
very similar to direct individual-level behavioral biases.

F. Caveats and Extensions of Fable 4

We have seen that biased information percolation offers an explanation for
a wide set of trading and return patterns that are almost always attributed
to relatively direct psychology biases “for” certain investor beliefs and behav-
iors. Missing from the model are rational arbitrageurs who understand b bias
and κ bias. As in other behavioral asset pricing models, introducing rational
arbitrageurs would reduce but not eliminate mispricing.

How plausible is the assumption of b bias? Why would someone add b as a
sender, and yet, as a receiver, neglect the fact that others do so? One reason,
as mentioned earlier, is that b-bias may be introduced unconsciously. A second
reason is that in reality people do indeed often fail to put themselves into
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others’ shoes, that is, to think through how others use information or behave
strategically.21

More broadly, if b were stochastic across agents (or they think that it is),
then knowledge that one personally has a value bi > 0 would not conclusively
refute, in the agent’s mind, the possibility that in the population E[bj] = 0. In
a related vein, there are plausible errors in higher order beliefs that would
effectively induce neglect of b bias.22

Since even small biases in the model are amplified recursively, outcomes are
highly sensitive to small variations in bias b, making the sign and scale of
action booms and price bubbles hard to predict. For example, an arbitrarily
small difference in b between positive and negative values eventually makes
the difference between a large positive or negative bubble.

Importantly, the conclusions of the model apply even when b is very close to
zero. Owing to recursive amplification of bias in sequential meetings, even a
small bias ultimately has a very large effect. The b ≈ 0 possibility also suggests
another reason why people would ignore b, that is, act as if b = 0. A heuristic
of ignoring parameters that are very close to zero is highly effective in many
decision domains. So treating b = 0 may be a misapplication of a generally
effective heuristic. Furthermore, people may be fooled by early experience,
since, when b ≈ 0, the model implies that for a long time the behavior of the
system will be very close to the behavior when b = 0.

The model takes the distribution of b bias as exogenous. What causes the
level of transmission bias to be high or low? One likely contributor is general
public mood. Good mood tends to induce more positive evaluations and recall
(Wright and Bower (1992)). This suggests that good mood will induce more
positive transmission of evaluations of possible actions, such as buying an
asset, to others as well. This argument raises the question of whether episodes
that induce good versus bad mood, such as the United States’ defeat in the
Vietnam War during the mid-1970s or the victory of the West in the Cold War,
affected social transmission dynamics.

The millennial high-tech stock market boom is consistent with a high re-
alization of b in reporting one’s opinion about high-tech start-ups. There was
general positive mood about a strong economy, and the world felt much safer
to many after the end of the Cold War. In addition, there was excitement about
the rise of the internet and a sudden increase in admiration for the being tech-
savvy. This episode highlights the need for empirical study of whether and how
general mood affects transmission bias, action booms, and mispricing.

Mood is also likely to shift endogenously during a boom period, resulting in
positive feedback to transmission bias. Growing excitement may cause people
to bias their signals reports favorably during the inception phase of an action

21 This is reflected in the cognitive hierarchy model in game theory (level-k thinking; see,
Camerer, Ho, and Chong (2004)), cursed equilibrium (Eyster and Rabin (2005)), and the exten-
sive experimental evidence that motivates these approaches.

22 Suppose most people understand b bias, but wrongly believe that everyone does. If some fools
fail to adjust the signals they receive downward by b > 0, the signals they pass on will be upward
biased and such bias will be amplified through the meeting process.
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boom or market bubble, with downward bias during the correction phase. There
is evidence that people tend to pass on exaggeratedly bad news when a topic
is emotionally negative, and exaggeratedly good news when a topic is positive
(Heath (1996)). Such behaviors may exacerbate booms and their collapse. So
the effect of mood on social transmission deserves exploration.

In pioneering empirical tests of the effects of investor sentiment (Lee,
Shleifer, and Thaler (1991), Baker and Wurgler (2006, 2007)), fluctuations in
sentiment are taken as exogenous. The shifts in optimism or pessimism about
an asset in the Price Bubbles Model endogenize swings in investor sentiment
as an emergent social phenomenon. Behavioral finance has offered theories of
sentiment as a direct reflection of individual-level psychological biases. So em-
pirical testing is needed of the effects of the conditioning variables motivated by
the social approach to investor sentiment. These include proxies for sociability,
network structure, and shifts in communication technologies (such as the rise
of the internet, blogs, and social media).

V. Fable 5: Biased Transmission of Folk Models

My final fable is about the biased transmission of folk models. I discuss
why folk models are important, and I briefly sketch some work-in-progress to
suggest how contagion of economic folk models can be analyzed.

A folk model is an understanding of how the world works—an internal
representation of external reality.23 Examples include belief in Heaven and
Hell, or in the payback criterion for capital budgeting. (After all, Hell is a
kind of payback.) Distinguished scholars have argued that what I refer to
as folk models are key drivers of human behavior. As lenses for seeing the
world, different folk models induce different biases in the social transmission of
information signals.

Folk models are often shaped by vivid narratives—stories (descriptions of
sequences of events), often with emotional and moral overtones. But folk models
also often consist of mundane beliefs about how the world works. In either case,
since thinking is costly and requires effort, folk models are often oversimplified
representations of reality.

Folk models spread from person to person through conversation, and compete
for human attention and belief. This competition is greatest for directly conflict-
ing folk models. For example, the folk model that holds that past returns tend
to continue (“the trend is your friend”) is opposed by the folk model that holds
that they tend to reverse (“buy on the dips”). Shifts in the population frequen-
cies of different folk models over time are examples of cultural evolution (see,

23 An equivalent term from cognitive science and psychology is mental model (Craik (1943),
Johnson (1983)). Folk economic models have been discussed under a variety of names, such as
popular models (Shiller (1990)), mental constructs (Denzau and North (1994)), folk economics,
models, or beliefs (Rubin (2003), Hirshleifer and Teoh (2009, 2018), Boyer and Petersen (2018)),
mental models (Hoff and Stiglitz (2016)), and others (Rubin (2002), Caplan (2007), Hirshleifer
(2008)).



Presidential Address: Social Transmission Bias 1813

for example, the survey of Mesoudi, Whiten, and Laland (2006)). Behavioral fi-
nance takes extrapolative versus contrarian investor beliefs as given—perhaps
even hard-wired. In contrast, in social finance, such beliefs spread contagiously
and are potentially in competition.

Several authors propose that compartmental models from epidemiology can
capture the spread of folk models and financial behavior. In such models, an
infection with a financial belief, such as enthusiasm for a technical strategy or
for Bitcoin, spreads through a population over time via random contacts. Some
versions of compartmental models, such as the SIR Model, have an epidemic
rise-and-fall time path. So the SIR Model has been applied to help explain
trading and price bubbles.24

In the SIR Model, there are three types of agents: S (Susceptible), I (Infected),
and R (Recovered/Resistant/Removed). Under appropriate parameter values,
the fraction of I agents can rise in a bubble-like trajectory before declining
toward zero. At the start, almost everyone is susceptible. In a random meeting,
there is a probability that an S agent becomes infected. This probability is a
measure of transmission bias toward infection. The infected randomly recover
over time. Having joined the R compartment, an agent never changes again,
so in the long run the fraction of infecteds declines to zero.

The rise of infection is at first self-reinforcing. When the infected fraction
increases, meetings more often include an I instead of a pair of S’s. So there
is a convex upswing in the fraction of infected. Eventually, however, as the
susceptible fraction declines, so does the rate of new infection. As a result,
recovery draws the infected fraction toward zero.

How should we adapt the compartmental approach to biased transmission of
a novel folk model and its effects on economic behaviors? Consider a folk model
that induces overestimation of the expected payoff (e.g., terminal dividend)
from the relevant action, and three modifications to the SIR Model.

First is to move from the SIR Model to the (also standard) SIRS Model,
in which an R agent has a probability of becoming susceptible again. This
replenishes the S compartment, so the infected fraction asymptotes toward
a positive, endemic long-run steady state. This is often realistic. For example,
after a religious awakening fades, the fraction of the population that is religious
seldom declines to zero.

Second, I introduce investors and an asset market. As in Fable 4, the model
again has a single risky asset, a random terminal-date payoff, mean-variance
preferences, and myopically optimal trading decisions. However, now there is
no private information or supply noise, so (unrealistically) investor behavior
and the price path are deterministic. Also, there are now two types of investor
beliefs, namely, overoptimistic beliefs, which are held by the infected, and ra-
tional beliefs, which are held by the S and R agents.

Third, I modify the transmission bias by introducing buzz, the level of ex-
citement about the folk model. I argue that this makes the folk model more

24 See Shive (2010), Burnside, Eichenbaum, and Rebelo (2016), Shiller (2017, 2019), and Chinco
(2019).
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Figure 5. Price trajectory in SIRS model with asset market and buzz. This figure plots
the price path over time in an SIRS model with asset market and buzz, with damped os-
cillations owing to overreaction and overcorrection. Effects are exacerbated by buzz, suggest-
ing rich patterns in return autocorrelations at different lags. The figure plots the equilib-
rium price based on the following system of differential equations: R′(s) = rI(s) − kR(s) and
I′(s) = −rI(s) + m(a + bDI′(s))I(s)(1 − I(s)), where R(s) is the fraction of the population that is
resistant at date s, r is the recovery rate, I(s) is the fraction of the population that is infected with
the folk model, k is the rate of loss of resistance, m is the meeting frequency parameter, a is the in-
herent contagiousness parameter, b is buzz parameter, and D is an equilibrium pricing parameter
that reflects agents’ risk aversion. Price is vs = DI(s) and D > 0 is a constant. Parameter values:
a = 80, b = 5, r = 6.0, m = 0.58, k = 0.1, and D = 1. Initial conditions: I(0) = 0.001 and R(0) = 0.8.
(Color figure can be viewed at wileyonlinelibrary.com)

contagious—rapid growth in the number of adherents of a folk model gener-
ates excitement. When many people are adopting the pro-Bitcoin folk model,
for example, others may hear that Bitcoin is “hot,” making a meeting with
a Bitcoin enthusiast more persuasive. Letting the fraction of infected in the
population be I, I capture buzz as proportional to the time derivative, denoted
by İ.

When İ < 0, there is negative buzz, which promotes recovery from the folk
model. In the language of the SIRS Model, I am generalizing to allow the model’s
contagion parameter to vary endogenously and to take negative values. This
is not permitted in models of disease spread, where meetings can transmit an
infection but cannot cure it. In contrast, it is realistic to assume that meetings
can sometimes cure agents of belief in a folk model.

In equilibrium, prices reflect a weighted average of the beliefs of the three
investor types in the population. Figure 5 shows a possible price trajectory
in my SIRS model with buzz. It shares with the standard SIRS Model the
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possibility that correction of the initial epidemic itself overshoots, resulting in
damped oscillations. Under appropriate parameter values, there is an initial
rise and fall in price. This is similar to some behavioral models in which a
hump-shaped impulse response function induces return momentum at short
lags and reversal at long lags. Trading also rises and falls with a bubble, because
disagreement comes from the infected, whose frequency starts small, rises, and
ends small.

As the bubble collapses, the model implies that correction can overshoot.
The fraction of infected declines below its long-run equilibrium value, so that
after the crash, prices correct upward again, consistent with the evidence in
Goetzmann and Kim (2018). As in Fable 4, there is possible dead cat bounce.

The effect of buzz is to exaggerate the boom on way up and the collapse
on the way down, that is, it intensifies the positive feedback feature of bub-
bles. The damped oscillation in stock price suggests rich patterns in return
autocorrelations at different lags.25

Buzz effects are somewhat akin to return extrapolation as modeled in be-
havioral finance (DeLong et al. (1990)), since shifts in the frequencies of types
induce price changes. Empirically, one of the key differences is that in a social
contagion model, the average effect of buzz on investor beliefs and trading de-
pends on the frequencies of different investor types in the population. These
determine the probability of a mixed meeting in which an agent can potentially
be infected or cured.

My main points in Fable 5 are about the general compartmental approach
to folk models rather than the SIRS Model in particular. The SIRS Model is a
useful example, since it is similar to the SIR Model, the compartmental model
most familiar to economists. However, similar points can be made, for example,
in compartmental models without resistants, and in models in which there is
an exposed category of agents who take time before becoming infectious.

My focus here has been on shifts in the frequencies of competing folk models.
Ultimately, however, social economics and finance needs to analyze the content
of folk models. Where do folk models come from, and what determines how they
evolve, sometimes into elaborate forms? Pioneering steps along these lines have
been taken, for example, by Bénabou and Tirole (2006, 2016) and Shiller (2017,
2019).

VI. Emergent Themes

I now sum up with some themes about social transmission bias, and about
social economics and finance, that emerge from my five fables.

Theme 1. Compounding: Social transmission bias compounds recursively.

25 At short horizons, price changes tend to continue, suggesting positive autocorrelation. At
somewhat longer lags, a return on the rising side of a hump or the declining side of a trough tends
to be paired with a return on the opposite side, which suggests reversal. At even longer lags, a
return on the rising side of a hump or the declining side of a trough tends to be paired with a
return in a similar position on the next hump or trough, suggesting positive autocorrelation.
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Small bias can therefore have large effects.
Theme 2. Idiosyncrasy: Social transmission bias helps explain the idiosyn-

crasy of aggregate outcomes—why they are often error-prone and
unpredictable.
This derives from the sensitivity of outcomes to small biases
(Theme 1), and from external shocks that interact with these bi-
ases.

Theme 3. Dynamics: Social transmission bias can explain action booms, price
bubbles, and swings in investor sentiment.
This explanation can accommodate, but does not require, standard
ingredients for bubbles from behavioral finance, such as overcon-
fidence and overextrapolation.

Theme 4. Emergence: Socially emergent behavior often looks completely dif-
ferent from individual propensities.
Groups of army ants form death spirals, even though individual
ants have no propensity to walk in circles. Self-enhancing trans-
mission is a conversational behavior, which looks nothing like the
emergent behavior of aggressive trading. Biased reporting of sig-
nals in the biased percolation model is a conversational behavior;
the outcome of price bubbles and collapses is very different.

Theme 5. Mimicry: Social emergence can easily create the illusion of a direct
individual propensity “for” a behavior when no such propensity
exists.
Examples include the illusory appearance of lottery preferences
in the self-enhancing transmission model, of present-biased con-
sumption preference in the visibility bias model, and of extrapola-
tive beliefs in the biased percolation model.
Owing to the possibility of illusory effects, we often overstate the
inferences from empirical tests.

Theme 6. Proxies: The social transmission bias approach, and social eco-
nomics and finance in general, suggests new test variables for
empirical research. The first category of test variables consists
of general proxies for social interaction and network position.26

The second category consists of proxies for the sources of social
transmission bias.27

In closing, we academics, like the turkeys marching around a dead cat, some-
times get caught in closed loops. At worst, these loops degenerate into ritualistic
cycles. At best, they blind us to part of reality. But we humans are smarter than

26 Such proxies include measures of sociability, communication technologies and media, indi-
vidual social network position, and overall social network connectivity. Also, since both social
interaction and stock trading are associated with spatial proximity, firm location can proxy for
features of the relevant social network.

27 Such proxies include individual psychological traits and communication incentives, envi-
ronmental cues, the content of folk models, and the textual characteristics of folk models and
transmitted signals.
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turkeys—though it does not always seem that way. We can break out of our
closed loops.

Such breakout moments are rare and precious. I believe that social eco-
nomics and finance is a once-in-a-generation research opportunity. The poet
John Keats, on experiencing a life-changing revelation, said that he felt

. . . like some watcher of the skies
When a new planet swims into his ken . . .

Like that astronomer, we have a new world to explore—a new way to un-
derstand human behavior. The outline of an emerging field of inquiry is now
discernable—social economics and finance—and some of its key building blocks:
social networks, folk models, and, as I emphasize in this address, social trans-
mission bias.

Appendix

This appendix provides proofs of Propositions 1 to 11. The Internet Appendix
analyzes biased information percolation with single-signal transmission bias,
and provides the proof of Proposition 12 and a figure illustrating the Action
Booms model.

Proof of Proposition 1: I use the following lemma.

LEMMA 1: For an agent who has had Ni ≥ 0 meetings and who possesses ni

signals, in the Full-Batch Transmission Bias regime:

(1) The number of signals the agent possesses is a function of the number of
meetings,

ni = 2Ni
. (A1)

(2) The agent’s per-signal bias count as a function of the number of meetings
is

f bi = Ni

2
. (A2)

(3) The agent’s per-signal bias count is an increasing function of the number
of signals the agent has

f bi = log2ni

2
. (A3)

Proof of Lemma 1:
I suppress i superscripts.
Part 1: Let B(N) be the function that gives any agent’s number of biases as a

function of the agent’s number of meetings N, and let n(N) be the function that
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gives any agent’s number of signals. For N = 0, n(0) = 1 as claimed. Suppose
as inductive hypothesis that the claim holds through some value N. Then the
next meeting is with a partner who also has 2N signals. So n(N + 1) = 2N+1.
Thus, by induction the result holds.

Part 2: At agent i’s N’th meeting, N ≥ 0, agent i has n(N) = 2N signals.
Owing to homophily, agent i is paired with another agent who has the same
number of signals.

Let gb(N) be the function that gives any agent’s per-signal bias as a function
of N. After zero meetings, an agent has zero biases, so B(0) = gb(0) = 0, as
claimed. As inductive hypothesis, suppose that for all N′ ≤ N, gb(N′) = N′/2,
so that the number of biases possessed by an agent with N′ signals satisfies
B(N′) = 2N′−1N′. I show that these relations also hold for N + 1.

Coming into an agent’s (N + 1)th meeting, the total number of biases pos-
sessed by the agent and by the agent’s sending partner is B(N), and the sender
adds a new b increment to his average signal, so the receiver receives a total of
B(N) + n(N) additional biases. As of meeting N, the receiver’s per-signal bias
count is gb(N) ≡ B(N)/n(N). After meeting N + 1, it is

gb(N + 1) = 2B(N) + n(N)
2n(N)

= gb(N) + 1
2

= N + 1
2

.

Furthermore, the number of biases the agent possesses is 2N+1gb(N + 1) =
2N(N + 1), as was to be proved. So the claim follows by induction.

Part 3 follows immediately from the other parts. ‖
I now apply Lemma 1 to complete the proof.
Part 1: The perceived per capita number of signals at date s is

φs
B=
∫

i∈[0,1],μ
ni

sdi

=
∞∑

N=0

μs(n(N))n(N)

=
∞∑

N=0

(ηκs)Ne−ηκs

N!
2N

= eηκs
∞∑

N=0

(2ηκs)Ne−2ηκs

N!

= eηκs, (A4)
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where the last summation is the sum of the probabilities of a Pois(2κηs) distri-
bution. The rational assessment sets κ = 1.

Part 2: To calculate the population-wide per-signal bias count f b
s , recall that

for an agent with Ni meetings, by Proposition 1 the number of signals is n(Ni) =
2Ni

, and the per-signal bias count is gb(Ni) = Ni/2, so the agent’s total bias
count is 2Ni−1Ni. Thus, letting nbi denote the number of biases of agent i at
date s, the per capita average number of biases at date s is

Bs ≡
∫

i∈[0,1]
nbi

s di

=
∞∑

N=0

μs(ni(N))gb(N)2N

= eηκs

2

∞∑
N=0

N
(2ηκs)Ne−2ηκs

N!

= eηκsηκs, (A5)

since the mean of Pois(2ηκs) is 2ηκs. Dividing by φs as given in Part 1 gives the
population per-signal bias count f b

s = ηκs as asserted.
Part 3: The perceived frequency of an agent with Ni meetings by date s is

Pois(κηs). But ni = 2Ni
by Proposition 1 Part 1, so the result follows immedi-

ately. ‖
Proof of Proposition 2: Under Gaussian updating, for an agent with n private

signals and a set of public signals with total precision τ Z, the variance of X
given these signals is τ X + nτ S + τ Z. The private signal errors (i.e., the ε terms)
average to zero across any infinite set of agents with a given number of signals
n, that is,

∫
i:ni=n εidi = 0. When κ < 1, agents misperceive the per capita signal

count to be φs instead of φR
s . This derives from their mistaken belief that κ = 1.

An agent’s per-signal bias count f bi
s depends only on ni

s, so I denote this function
by hb(ni

s). Restoring s subscripts, integrating across agents in (15) gives

�s =
∫

i∈[0,1],μR
θ i

sdi = 1
γ

∫
i,μR

[
τ XX + ni

sτ
S(X + εi

s + bf bi
s

)+ τ Z
s Zs −

(
τ X + ni

sτ
S + τ Z

s

)
v
]
di

= 1
γ

∑
n

∫
i:ni=n;μR

[
τ XX + nτ S(X + εi

s + bf bi
s

)+ τ Z
s Zs −

(
τ X + nτ S + τ Z

s

)
v
]
di

= (τ Z
s Zs + τ XX)

γ
+ 1

γ

∑
n

μR
s (n)

[
nτ S(X + bhb(n)

)−
(
τ X + nτ S + τ Z

s

)
v
]

= 1
γ

[
τ Z

s Zs + τ XX + τ S
(
φR

s X + bBs

)
−
(
τ X + φR

s τ S + τ Z
s

)
v
]

= 1
γ

[
τ Z

s Zs + τ XX + φR
s τ S(X + bf b

s

)−
(
τ X + φR

s τ S + τ Z
s

)
v
]
, (A6)
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recalling that Bs is the per capita number of biases per agent and f b
s = Bs/φ

R
s

is the per-signal bias count. So the aggregate amount of the activity is linear
in the product of the per capita number of signals and the per-signal bias.

The second equation follows directly by setting b = 0, subtracting, and
dividing. ‖

Proof of Proposition 3: The agent has measure zero, and thus does not affect
the equilibrium. The expected aggregate action is given by equation (17).

For the deviant agent, by (15), bearing in mind the independence of the
number of signals ni

s, the fundamental X, and signal noise,

γ E
R[θ i

s |b] = E
R[τ X(X − v) + ni

sτ
S(X + εi + bf bi

s − v
)+ τ Z(Z − v)|b]

= τ X(X − v) + τ SbE
R[ni

s f bi
s |b] + τ S

E
R[ni

s|b](X − v) + τ Z(Z − v). (A7)

The number of signals possessed by i is greater than that of other agents in
a first-order stochastic dominance (FOSD) sense, owing to the higher meeting
arrival rate. Furthermore, f bi is increasing in ni by equation (A3). So the
product ni

s f bi
s , the number of biases, is also higher in an FOSD sense for i

than for other agents. It follows that E[ni
s f bi

s |b] > φR
s f b

s and E
R[ni

s|b] > φR
s , so

E
R[θ i

s |b] > E
R[�s|b]. ‖

Proof of Proposition 4: For visual clarity I omit s subscripts. Recalling that
ξ is the normalized price, substituting into optimality condition (3), and using
the conditional precision as in (25) and the definitions of λ’s in (26), an agent’s
perceived optimal position satisfies

γ

[
τ X + nτ S + τ Z +

(
αX

α�

)2

τ�

]−1

θ i = E
[
X|	i]− v

B= λSY
i + λP Z + λξ ξ − v

= λS(X + εi)+ λP Z + λξ ξ − v

=

⎡
⎢⎣ niτ S

τ X + niτ S + τ Z +
(

αX

α�

)2
τ�

⎤
⎥⎦(X + εi)+

+

⎡
⎢⎣ τ Z

τ X + niτ S + τ Z +
(

αX

α�

)2
τ�

⎤
⎥⎦Z

+

⎡
⎢⎣

(
αX

α�

)2
τ�

τ X + niτ S + τ Z +
(

αX

α�

)2
τ�

⎤
⎥⎦[ v

αX −
(

αP

αX

)
Z
]

− v.

(A8)
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Multiplying by the LHS bracketed expression gives the condition for agent i’s
position,

γ θ i = niτ S(X + εi)+
[
τ Z − αPαXτ�

(α�)2

]
Z +

[(
αX

(α�)2

)
τ�(1 − αX) − τ X − niτ S − τ Z

]
v.

(A9)

To solve for the perceived pricing coefficients, I impose market clearing by
integrating demands over agents i. For any given number of private signals,
signal noise errors (i.e., the ε terms) average to zero across infinite groups of
agents, that is,

∫
i:ni

s=n εidi = 0, where εi is as defined in (12). So agents think
that in equilibrium, at each date,

γ�
B=
∫

i∈[0,1],μ
γ θ idi =

∫
i∈[0,1],μ

{
niτ S(X + εi)+

[
τ Z − αPαXτ�

(α�)2

]
Z

+
[(

αX

(α�)2

)
τ�(1 − αX) − τ X − nτ S − τ Z

]
v

}
di

=
[
τ Z − αPαXτ�

(α�)2

]
Z

+
∑

n

μ(n)
{

nτ S X +
[(

αX

(α�)2

)
τ�(1 − αX) − τ X − nτ S − τ Z

]
v

}

=
[
τ Z − αPαXτ�

(α�)2

]
Z + φτ S X +

[(
αX

(α�)2

)
τ�(1 − αX) − τ X − φτ S − τ Z

]
v.

(A10)

Solving for price,

v
B=

γ� −
[
τ Z − αPαXτ�

(α�)2

]
Z − φτ S X(

αX

(α�)2

)
τ�(1 − αX) − τ X − φτ S − τ Z

. (A11)

Equating corresponding coefficients on the shocks �, X, and Z in the agents’
price conjecture (22) gives a system of equations that can be solved for the
coefficients of the perceived equilibrium price,

α� = γ(
αX

(α�)2

)
τ�(1 − αX) − (

τ X + φτ S + τ Z
) (A12)

αP =
αPαXτ�

(α�)2 − τ Z(
αX

(α�)2

)
τ�(1 − αX) − (

τ X + φτ S + τ Z
) (A13)
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αX = − φτ S(
αX

(α�)2

)
τ�(1 − αX) − (

τ X + φτ S + τ Z
) . (A14)

Dividing (A12) by (A14) gives

α� = − γ

φτ S αX. (A15)

Substituting this expression for α� into (A14) and solving for αX verifies (28).
It follows by (A15) that α� satisfies (29).

To solve for αP , replace αX/α� in the numerator of (A13) with −φτ S/γ (by
(A15)) to obtain

αP =
−φτ SαPτ�

γα� − τ Z(
αX

(α�)2

)
τ�(1 − αX) − (

τ X + φτ S + τ Z
) . (A16)

Dividing this equation by (A12) gives

αP

α�
= −αP

α�

φτ Sτ�

γ 2 − τ Z

γ
. (A17)

Solving for αP/α� gives

αP

α�
= − γ τ Z

γ 2 + φτ Sτ�
. (A18)

Finally, using (29), we obtain (30). ‖
Proof of Proposition 5: Suppressing s subscripts, in first-order condition (A8),

we replace the mistaken perception of the agent’s average private signal value,
X + εi, with X + εi + bf bi to obtain

γ θ i = niτ S(X + εi + bf bi)+ τ ZZ +
(

αX

α�

)2

τ�

(
v − αP Z

αX

)

−v

[
τ X + niτ S + τ Z +

(
αX

α�

)2

τ�

]

= niτ S(X + εi + bf bi)+
[
τ Z −

(
αXαP

(α�)2

)
τ�

]
Z

−
{
τ X + niτ S + τ Z +

(
αX

(α�)2

)
(αX − 1)τ�

}
v.

(A19)
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Integrating across agents introduces the rational assessment of per capita
signal count and per-signal bias. Bearing in mind that f bi depends only on ni,

γ� =
∫

i∈[0,1],μR
γ θ idi

=
∫

i∈[0,1],μR

[
niτ S(X + εi + bf bi)+

[
τ Z −

(
αXαP

(α�)2

)
τ�

]
Z

−
{
τ X + niτ S + τ Z +

(
αX

(α�)2

)
(αX − 1)τ�

}
v

]
di

=
[
τ Z −

(
αXαP

(α�)2

)
τ�

]
Z

+
∑

n

μR(n)
(

nτ S(X + bhb(n)
)−

{
τ X + nτ S + τ Z +

(
αX

(α�)2

)
(αX − 1)τ�

}
v

)

=
[
τ Z −

(
αXαP

(α�)2

)
τ�

]
Z + τ S

(
φRX + bB

)

−
{
τ X + φRτ S + τ Z +

(
αX

(α�)2

)
(αX − 1)τ�

}
v

=
[
τ Z −

(
αXαP

(α�)2

)
τ�

]
Z + φRτ S(X + bf b)

−
{
τ X + φRτ S + τ Z +

(
αX

(α�)2

)
(αX − 1)τ�

}
v, (A20)

where as a reminder, B is the per capita number of biases per agent, and
f b = B/φR is the per-signal bias.

Solving for the equilibrium market price gives

v =
[
τ Z −

(
αXαP

(α�)2

)
τ�
]
Z + φRτ S

(
X + bf b

)− γ�

τ X + φRτ S + τ Z +
(

αX

(α�)2

)
(αX − 1)τ�

. (A21)

Equation (A21) contains αX/α� and αP/α�, ratios of mistaken coefficients that
agents have in their price conjectures. The first of these, by (A15), is −φτ S/γ .
The second of these is given by (A18). Also, by (28) and (29),

αX − 1
α�

= γ
(
τ X + τ Z

)
γ 2 + φτ Sτ�

. (A22)

So we can substitute out all α ratios in (A21), which yields (31). ‖
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Proof of Proposition 6: By inspection of (31) in Proposition 5, the actual
αcoefficients are

αRX
s = αRb

s = φR
s τ S(γ 2 + φsτ

Sτ�)
γ 2(τ X + φR

s τ S + τ Z
s ) + φsφR

s (τ S)2τ�
(A23)

αRP
s = τ Z

s γ 2

γ 2(τ X + φR
s τ S + τ Z

s ) + φsφR
s (τ S)2τ�

(A24)

αR�
s = − γ (γ 2 + φsτ

Sτ�)
γ 2(τ X + φR

s τ S + τ Z
s ) + φsφR

s (τ S)2τ�
. (A25)

So

αRX
s

αX
s

=
[

φR
s τ S(γ 2 + φsτ

Sτ�)
φsτ S(γ 2 + φsτ Sτ�)

][
φ2

s (τ S)2τ� + γ 2(τ X + φsτ
S + τ Z

s )
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )

]

= φR
s

φs

[
φ2

s (τ S)2τ� + γ 2(τ X + φsτ
S + τ Z

s )
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )

]

= 1 + φR
s

[
φ2

s (τ S)2τ� + γ 2(τ X + φsτ
S + τ Z

s )
]− φs

[
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )
]

φs
[
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )
]

= 1 + (φR
s − φs)γ 2(τ X + τ Z

s )
φs
[
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )
] . (A26)

The term φR
s − φs

>
< 0 if and only if κ

<
> 1. All other terms are also positive, so

αRX
s /αX

s
>
< 1 if and only if κ

<
> 1. Similarly,

αRP
s

αP
s

=
(

τ Z
s γ 2

τ Z
s γ 2

)[
φ2

s (τ S)2τ� + γ 2(τ X + φsτ
S + τ Z

s )
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )

]

= φ2
s (τ S)2τ� + γ 2(τ X + φsτ

S + τ Z
s )

φR
s φs(τ S)2τ� + γ 2(τ X + φR

s τ S + τ Z
s )

= 1 +
[
φ2

s (τ S)2τ� + γ 2(τ X + φsτ
S + τ Z

s )
]

−
[
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )
]

φR
s φs(τ S)2τ� + γ 2(τ X + φR

s τ S + τ Z
s )

= 1 + (φs − φR
s )τ S(γ 2 + φsτ

Sτ�)
φR

s φs(τ S)2τ� + γ 2(τ X + φR
s τ S + τ Z

s )
. (A27)

So αRP
s /αP

s
<
> 1 if and only if κ

<
> 1.

Finally, it is easy to see that αR�
s /α�

s = αRP
s /αP

s , since αR�
s and α�

s also have
the same numerators. ‖

Proof of Proposition 7: Let “t−” denote a date just before discrete date t, and
recall τ Z

s as given in (1). By (31), the expected date-t price change conditional
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only on b is

E
R[vt − vt−|b] = (γ 2 + φtτ

Sτ�)φR
t τ Sbf b

t

γ 2(τ X + φR
t τ S + eζ tτ P) + φtφ

R
t (τ S)2τ�

− (γ 2 + φtτ
Sτ�)φR

t τ Sbf b
t

γ 2(τ X + φR
t τ S + eζ (t−1)τ P) + φtφ

R
t (τ S)2τ�

= (γ 2 + φtτ
Sτ�)φR

t τ Sbf b
t γ 2(eζ (t−1) − eζ (t))τ P

[γ 2(τ X + φR
t τ S + eζ tτ P) + φtφ

R
t (τ S)2τ�][γ 2(τ X + φR

t τ S + eζ (t−1)τ P) + φtφ
R
t (τ S)2τ�]

.

(A28)

Since ζ > 0, this expression is negatively proportional to b. ‖
Proof of Proposition 8: By Proposition 7, Sign(ER[
vt|b]) = −Sign(b). By (32),

the expected long-run postevent price change conditional on b at any date s is

E
R[X − vs|b] = −E

R[vs|b]

= − (γ 2 + φsτ
Sτ�)φR

s τ Sbf b
s

γ 2(τ X + φR
s τ S + τ Z

s ) + φsφR
s (τ S)2τ�

, (A29)

so Sign(ER[X − vs|b]) = −Sign(b) = Sign(ER[
vt|b]). Inspection of (A28) and
(A29) shows that both expectations are negatively proportional to b. ‖

Proof of Proposition 9: By (31), both vt and vt− contain b in the numerator.
Since b is independent of all other exogenous variables, the contribution of
V(b) to the covariance comes from the b terms in the numerators, with the
denominators as multiplied constants. Letting K > 0 denote the denominator
of vt−, the denominator of vt is K + γ 2τ P . Then the coefficient on b in vt is

(γ 2 + φtτ
Sτ�)φR

t τ S f b
t

K + γ 2τ P (A30)

and in vt− is

(γ 2 + φtτ
Sτ�)φR

t τ S f b
t

K
. (A31)

Since the numerators are identical, the coefficient on b in vt − vt− is negative.
Since the coefficient on b is negative in X − vt, when V(b) is sufficiently large,
the covariance is positive. ‖

Proof of Proposition 10: Consider a random sample of public news dates.
Consider first the case b > 0. Let the terminal price be defined as vT ≡ X. By
date 1, the stock is, on average, overpriced, E

R[X|b] < E
R[v1|b], which implies

that

0 >
E

R[X − v1|b]
T − 1

=
E

R
[∑T −1

t=1 (vt+1 − vt)
∣∣∣b]

T − 1
. (A32)

The RHS is the expected value of vt+1 − vt in a random sample of public event
dates from t = 1 . . . T − 1, that is, the expected short-horizon drift after these
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dates. The sign of the expectations in (A32) is reversed when b < 0. Further-
more, by Proposition 8, the LHS of the equality is negatively proportional to b,
so the RHS is as well.

The expected average event-date reaction in such a sample is E
R[
vt|b] < 0,

with opposite sign when b < 0, and is negatively proportional to b, by Proposi-
tion 7. So conditional on b, the expected event-date and short-horizon reactions
have the same sign. ‖

Proof of Proposition 11: Let 
 be a short time interval. We seek to sign

covR(vs+
 − vs, vs+2
 − vs+
) = E
R[(vs+
 − vs)(vs+2
 − vs+
)], (A33)

where the equality holds because E[vs] = 0 for all s. Since V(b) is large, to an
arbitrarily good approximation, in substituting for dated v values from (31)
into (A33), we can consider only the coefficients on b. Let the relevant terms
from the numerator and the denominator, from (31), be denoted

g(s) ≡ (γ 2 + φsτ
Sτ�)τ SφR

s f b
s

h(s) ≡ γ 2(τ X + φR
s τ S + τ Z

s ) + φsφ
R
s (τ S)2τ�. (A34)

When V(b) is large and 
 small, two-term Taylor expansions applied to the
factors of the expectation give the approximation

E
R[(vs+
 − vs)(vs+2
 − vs+
)] ≈

(
g+g′
+ 1

2 g′′
2

h+h′
+ 1
2 h′′
2 − g

h

)(
g+g′2
+ 1

2 g′′4
2

h+h′2
+ 1
2 h′′4
2 − g+g′
+ 1

2 g′′
2

h+h′
+ 1
2 h′′
2

)
V(b).

I abbreviate this covariance as covR and suppress s subscripts. Since the terms
of order 
 cancel, I remove terms of order higher than 
2 to obtain

covR ≈ (g′h − h′g)2
2

h4 + 4h3h′
 + 5h2h′2
2 + 3h3h′′
2 V(b)

≈ (g′h − h′g)2
2

h4 V(b) > 0. (A35)

(Of course, this covariance of price changes approaches zero as 
 → 0, but the
autocorrelation, which is scaled by standard deviations, does not.) ‖
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