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Abstract: This paper is a brief history of game theory with its main theme being 

the nature of the decision makers assumed in the various stages of its historical 

development. It demonstrates that changes in the "image of man" nourished the 

developments of what many believe to be progress in game theory. The first 

stage, classical game theory , is defined by John von Neumann's and Oskar 

Morgenstern's pioneering book "Game Theory and Economic Behavior" which 

introduced the concept of individual rational players and focuses on conflicting 

interests. The second stage, modern game theory , is defined by the Nash player  

who is not only rational but, at least implicitly, assumes that all players are 

rational to such a degree that players can coordinate their strategies so that a 

Nash equilibrium prevails. The third stage, new game theory, is defined by the 

Harsanyi player who is rational but knows very little about the other players, 

e.g., their payoff functions or the way they form beliefs about other players' 

payoff functions or beliefs. The Harsanyi player either plays a highly 

sophisticated epistemic game on the forming of beliefs or rests content with 

himself by imitating the observed successful behavior of other agents. 
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1. Introduction 

 

Is there progress in game theory? Do we know more today in this field than the 

scholars in the decade after John von Neumann and Oskar Morgenstern published 

their pioneering Game Theory and Economic Behavior in 1944. Or, did we only 

experience a change in style and language over the last fifty years?1 The 

hypothesis of the following brief history of game theory is that the various stages 

of development are the result of different assumptions bout the nature of the 

decision makers underlying the alternative game theoretical approaches. The 

following text will not give a historical overview which aims for completeness.2 

Rather, it will trace the changes in  the "image of man" implicit in the 

development of game theory and demonstrate some of consequences that follow.  

 We will distinguish three major stages in the development of game theory. 

The first one, classical game theory, is defined by John von Neumann's and 

Oskar Morgenstern's book. It introduced axioms for the concept of the individual 

rational player. Such a player makes consistent decisions in the face of certain 

and uncertain alternatives. But, such a player does not necessarily assume that 

other players also act rationally. In contrast,  modern game theory is defined by 

the Nash player who is not only rational but assumes that all players are rational 

to such a degree that they can coordinate their strategies so that a Nash 

equilibrium prevails. The more recent, third stage in the development of game 

theory, new game theory, is defined by the Harsanyi player. This player is 

                                                 
1In the categories of Paul Feyerabend, game theory is an art and thus follows its dynamic pattern: 
"There is no progress in art, but there are different styles and each style is perfect in itself and follows 
its own law. Art is the production of styles and art history is the history of their sequence" 
(Feyerabend, 1984, p.29).   
2For example, we will not discuss whether John von Neumann or Emile Borel should get the credit for 
having introduced the minimax  theorem: in any case, it was von Neumann who demonstrated its general 
validity (see Rives, 1975). Nor will we discuss the work of Ernst Zermelo, Denes König and Laszlo 
Kalmar on the finiteness and determinedness of  the chess game. This work preceded the book of von 
Neumann and Morgenstern (1944), however, it focuses on analyzing of properties of  chess and does 
not ask the question which characterizes modern game theory: how should a player behave to achieve a 
good result? (See Schwalbe and Walker, 2001.)  
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rational but knows very little about the other players, e.g., their payoff functions 

or the way they form beliefs about other players' payoff functions or beliefs. This 

limitation initiated two complementary strings of research: the more traditional 

one, based on a rational choice model, is characterized by the analysis of 

interactive gedankenexperiments about forming beliefs  (i.e., epistemic games), 

while the second string follows an evolutionary approach where the agents rest 

content with themselves by imitating the observed successful behavior of other 

agents. The latter can be interpreted as the "rational conclusion" of the 

constrained cognitive capacity of the decision maker, on the one hand, and the 

complexity of the decision situation, on the other, or seen as the consequence 

suggested by the results of empirical research which challenge the rational 

choice model and its teleological background (see Frohn et al., 2001).  

 The discussion of these three stages forms the core of this paper. While 

much of the material is elementary and accessible to the non-specialist, the paper 

does contain some interpretive points that should be of interest to the advanced 

student of game theory. 

 

2.   Classical Game Theory and the Autonomously Rational Player 

 

Game theorists consider the axiomatization of the utility function in the case of 

uncertainty a major contribution in von Neumann and Morgenstern (1944). It 

paved the ground for the modeling of  rational decision-making when a decision-

maker is faced by lotteries. Thereafter a utility function, ui(.), which satisfies the 

expected utility hypothesis, i.e. 

 

(1)    ui([A,p;B,1-p]) = pui(A) + (1-p)ui(B)    

 

is called a von Neumann-Morgenstern utility function. In (1), A and B are events 

(or alternatives), p is the probability that event A occurs while 1-p is the 
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probability of B occuring. Thus [A,p;B,1-p] is a lottery (or prospect). It is a 

notational convention to write  [A,p;B,1-p] = A if p = 1 and [A,p;B,1-p] = B if p = 

0. Of course, [A,p;X,1-p] = A for every alternative X if p = 1.  

 The probabilities p can be related to a model of relative frequencies and 

are, in this sense, objective and thus represent risk; or they can be subjective (i.e. 

expectations or beliefs) and thus represent uncertainty. The classical distinction 

between  risk and uncertainty going back to Frank Knight (1921) appears, 

however, to be somewhat outdated today. For it does not seem to really matter in 

the end whether we believe in the objectivity of relative frequencies as an 

outcome of a random mechanism, or whether we derive our expectations from 

introspection and gedankenexperiments. One way or the other, they are all based 

on beliefs which reflect uncertainty and thus are subjective. If we follow this view 

and define rational behavior under uncertainty as maximizing expected utility in 

terms with (1), then our approach is Bayesian .  

 The utility values which the function ui(.) assigns to events (such as 

money, cars, or strawberries) are called payoffs. Because of (1) we do not have 

to distinguish between payoff and expected payoffs: if player i is indifferent 

between the lottery [A,p;B,1-p] and the sure event C  then  ui([A,p;B,1-p]) = ui(C), 

i.e.,  the payoffs are identical. If ui(.) satisfies (1) then it is well defined as utility 

function of individual i up to a linear order-preserving transformation. That is, if 

vi(.) = aiui(.) + bi and ai > 0 then ui(.) and vi(.) represent identical utility 

functions: thus ui(.) defines not a function but a family of functions and 

interpersonal comparison of utility is excluded because ai and bi are not 

determined.   

 The utility function of individual i can be linear, concave or convex in 

money - which coincides with risk neutrality, risk aversion, and risk affinity in so 

far as money defines the events of a lottery - or ui(.) can be related with money in 

a less rigid way without violating (1).  There is, however, ample empirical 

evidence that individual behavior does normally not follow a pattern which is 
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consistent with (1).3 There are  also strong intuitive arguments which challenge 

the adequacy of individual axioms which underlie the theory expressed in (1) 

such as the so-called Allais paradox. Later Nobel Laureate Maurice Allais 

(1953, p 527) demonstrated the proposed inconsistency of the axioms of the von 

Neumann Morgenstern utility theory by means of the following example:   

 (1) People are asked whether they prefer alternative A or alternative B 

where 

Alternative A: 100 millions for sure 

 

Alternative B: 

a chance of to win millions
a chance of to win millions
a chance of to win nothing

0 1 500
0 89 100
0 01

.

.

.

R
S|
T|

   

 

 (2) People are asked whether they prefer alternative C or alternative D 

where 

 

Alternative C: 
a chance of to win millions
a chance of to win nothing

0 11 100
0 89
.
.

RST  

 

Alternative D: 
a chance of to win millions
a chance of to win nothing

0 1 500
0 9
.
.

RST    

 

The money values are probably in "old" French francs. The expected values of A, 

B, C, and D are (measured in millions) 100, 139, 11 and 50, respectively. 

 Allais argues that for a large number of people, especially for those who 

are averse against taking risk, one observes that they prefer A to B and D to C. 

However,  von Neumann Morgenstern utility theory suggests that if A is 

preferred B then C is preferred to D. In order to see this, we write these 

                                                 
3See the seminal paper of Kahneman and Tversky (1979) for a prominent critique of the von Neumann 
Morgenstern utility function and Machina (1987) for a summary review of the discussion.   
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preference relations in terms of the von Neumann Morgenstern utility function 

of an agent i: 

 

 "A preferred to B" implies:  ui(100) > 0.1ui(500) + 0.89ui(100) + 

0.01ui(0) 

 

 "C preferred to D" implies: 0.11ui(100) + 0.89 ui(0) > 0.1ui(500) + 

0.9ui(0) 

 

Both inequalities can be reduced to 0.11ui(100)  > 0.1ui(500) + 0.01ui(0). Thus 

"A preferred to B" implies "C preferred to D". Consequently, "D preferred to C" is 

inconsistent with "A preferred to B" and corresponding behavior violates the 

expected utility hypothesis (1). 

  There are, however, also strong arguments in favor of (1) and the 

underlying axioms formalized in von Neumann and Morgenstern (1944). Firstly, 

there is empirical evidence that people tend to correct their behavior if they are 

aware that it deviates from (1) or one of its implications. Secondly, the 

generalization of alternative approaches to decision-making under uncertainty 

(such as the prospect theory  of Kahneman and Tversky (1979) and the similarity 

approach  of Rubinstein (1988)) are also criticized on the basis of contradicting 

empirical results and implausibility of underlying assumptions. Moreover, the 

alternative approaches tend to be more complicated than the theory behind (1) 

and therefore more difficult to apply to real life decision-making and textbook 

analysis. This is perhaps the main reason why game theorists stick to the von 

Neumann-Morgenstern utility function when it comes to decision-making under 

uncertainty. The maximization of such a utility function defines the rational 

player in game situations, i.e. if the outcome of a choice depends on the action 

of at least two agents and the agents, in principle, put themselves into the shoes 
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of the other agents when they make their decisions because they know of the 

interdependence of decisions.  

 There are however many ways to specify this knowledge and thus the 

image which a player has of the other player(s). Von Neumann and Morgenstern 

(1944) assumed that a player i does not expect that player j is necessarily 

rational: j's behavior may violate the theory embedded in (1) and its implications. 

In their theory of games, they propose that players should act rational even under 

the assumption that other players are irrational, i.e. inconsistent with (1): "... the 

rules of rational behavior must provide definitely for the possibility of irrational 

conduct on the part of others. ... In whatever way we formulate the guiding 

principles and the objective justification of 'rational behavior,' provisios will have 

to be made for every possible conduct of 'the others'" (p. 32). To characterize this 

proposition we will speak of autonomously rational players in the theory of von 

Neumann and Morgenstern.  

  

2.1 The Minimax Theorem  

 

It may come somewhat of a surprise, but von Neumann and Morgenstern's theory 

provides convincing results only if we have a situation in which there is pure 

conflict of interest  between two players and the decision situation can be  

modeled as a zero-sum game. For example, if we assume that the payoff (bi -

)matrix in Figure 1 is specified by the payoff values a = -α, b = -β  , c = -γ , and d 

= -δ, then it describes a zero-sum (two -by-two) game where player 1 has the pure 

strategies s11 and s12 and player 2 has the pure strategies s21 and s22.  
 

Figure 1: Generalized two -by-two game 
 

 s21 s22 
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s11  

 
(a,α) 

 
(b,β ) 

 
 

s12   
 

(c,γ) 
 

(d,δ ) 
 

 
       
     

In principle, the definition of utility functions given in (1) does not allow for 

interpersonal comparison of utility as implied by the zero-sum property. 

However, if there is pure conflict of interest between two players then the 

assumption that a utility gain to player 1 is a utility loss to player 2, and vice 

versa, seems appropriate. Note that, if the payoff values of the two players in each 

cell add to the same constant value, then the game is equivalent to a zero-sum 

game and can, without loss of information, be transformed into such a game. 

 Given a zero-sum game, von Neumann and Morgenstern (1944) suggest 

that each player will choose his maximin strategy. Thus player 1 looks for the 

minimum payoff in each line and then earmarks the strategy which is related to 

the highest payoff of these (two) minima while player 2 does likewise for his 

payoffs in each column. If the earmarked value of player 1 and the earmarked 

value of player 2 add up to zero, then the corresponding strategy pair 

characterizes the solution and the related payoff pair describes the outcome.  

 If the earmarked values do not add up to zero, then player i (i = 1, 2) will 

randomize on his strategies such that the expected value is independent of 

whether the other player chooses his first or second strategy or any mixture of 

these strategies. For instance, if player 1 chooses his first strategy with 

probability p and player 2 chooses his first strategy with probability q, then p and 

q are determined by the two equalities: 

 

  pa + (1-p)c = pb + (1-p)d and qα + (1-q)β  = qγ + (1-q)δ 
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Solving these equalities, we get 

 

(2)   p° = 
d c

a b c d
−

− − +
   and  q° = 

δ β
α β γ δ

−
− − +

 

 

It is easy to show that the (expected) payoff player 1 is equal to the negative of 

the payoff of player 2 if they choose their corresponding first strategies with 

probabilities p° and q°. This is the essence of the so-called minimax theorem of 

von Neumann and Morgenstern which says that, given a two-person zero-sum 

game, there is always a pair of strategies, either in pure or mixed strategies, such 

that the maximin payoff  equals the minimax payoff of player 1. Note that in two-

person zero-sum games the maximin payoff of player 2 with respect to his own 

payoff values is identical to the minimax value with respect to the payoffs of 

player 1. (Because the payoffs of player 2 are the negative values of the payoffs 

of player 1, it is sufficient to specify the payoffs of player 1 only.)    

 

 

2.2 Limitations of Classical Game Theory 

 

Baumol (1972, p. 575) summarizes the classical view on game theory which 

derives from the minimax theorem: "In game theory, at least in the zero-sum, 

two-person case, there is a major element of predictability in the behavior of the 

second player. He is out to do everything he can to oppose the first player. If he 

knows any way to reduce the first player's payoff, he can be counted upon to 

employ it." However, the minimax theorem loses its power if the players' 

interests do not contain pure conflict and the zero-sum modeling becomes 

inappropriate. This is particularly the case if strategic coordination problems 

become eminent. For instance, let's assume that a > 0, α > 0, d > 0, δ  > 0, and all 
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other payoffs in Figure 1 are zero. Then the matrix in Figure 1 represents a 

variable-sum game and the minimax theorem does not, in general, apply 

anymore. Assume further, player 1 and 2 have to choose their strategies 

simultaneously - or in such a way such that they cannot see what the other player 

has chosen. Then a player has to solve the problem of how to coordinate his 

strategy with the strategy of the other player in order to gain positive payoffs. The 

fact that the theory of von Neumann and Morgenstern says little about 

coordination problems, in particular, and variable-sum games, in general, concurs 

with the problem that the guiding hand of self-interest becomes weak in strategic 

situations if there is no pure conflict of interest and players have difficulties to 

form expectations about the behavior of their fellow players.  

 It is not surprising that the textbook representation of game theory of the 

1950s and still in the early 1960s focused on the two -person zero-sum game and 

problems of how to calculate the maximin solution if players have more than two 

pure strategies (see, e.g.,  Allen, 1960). An exception is the ingenious book by 

Luce and Raiffa (1957) which is still a great source of inspiration for game 

theorists.   

 The assumption of a pure conflict of interest seems also questionable if 

there are more than two players. If we try to formulate a zero-sum game for three 

players then the problem becomes rather obvious. Moreover, in the case of more 

than two players there is a potential for coalitions. Von Neumann and 

Morgenstern (1944)  developed the concept of the characteristic function in 

order to express the value of a coalition. They also suggested a solution concept 

for the case of more than two players which may take care of coalition 

formation: they simply called this concept solution.4 However, neither does its 

application give an answer which coalition will form nor does it determine the 

payoffs which the individual players get in the course of the game.  

                                                 
4It is identical with the concept of stable s ets of modern game theory (see Owen, 1995, pp. 243-249).  
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 It is fair to mention that even more than fifty years later the existing 

theories of coalition formation provide answers to these two problems only if the 

coalition games are rather specific and the competing theories generally provide 

divergent answers. However,  for the case of variable-sum games and games with 

more than two players (if they do not form coalitions) a very promising solution 

concept has been suggested: the Nash equilibrium and its refinements. 

 

3. Nash Equilibrium and Modern Game Theory 

  

In his doctoral dissertation, John Nash (1951) proved that for finite game - a 

game with a finite number of pure strategies assigned to each member of a finite 

set N of n players  - an equilibrium s* exists. s* is a strategy vector s* = (s1*, 

...,si*, ..., sn*), where s1* is the strategy of player, s i* is the strategy i, and sn* is 

the strategy of player n, such that  ui(s1*, ...,s i*, ..., sn*) ###  ui(s1*, ...,si, ..., 

sn*) for all (pure or mixed) strategies si which player i can choose and for all 

players i in N. Thus, if player i chooses si* then he cannot achieve a higher payoff 

by choosing an alternative strategy si, given that the other players choose their 

strategies in accordance with vector s*. We say that the strategies in s* are 

mutually best replies  to each other and, consequently, s* is a Nash equilibrium.  

 If mutually best replies are the result of decisionmaking then, obviously, 

the Nash equilibrium assumes that players are rational and that they expect the 

other players be also rational. This assumption is quite different from the 

autonomously rational player which characterizes the theory of von Neumann and 

Morgenstern. In fact, the underlying assumption is more general and even 

stronger: "...an equilibrium strategy describes a player's plan of action as well as 

those considerations which support the optimality of this plan" (Rubinstein, 

2000, p.77). One of the considerations is that the other players are rational - 

another is that the other players choose the (equilibrium) strategies such that the 

chosen strategy is a best reply. 
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3.1 Dominant Strategies and Refinements 

   

It is straightforward that Nash equilibrium and maximin solution proposed by von 

Neumann and Morgenstern are identical for zero-sum games. If we assume c > a 

> d > b and  β > α > δ  > γ  in Figure 1, then the matrix represents a variable-sum 

game and the strategy pair (s12,s22) is a Nash equilibrium of this game. In fact, 

because of the assumed preference relation the matrix describes a specification 

of the famous prisoners' dilemma game as both players have a dominant strategy 

and the Nash equilibrium is inefficient inasmuch as it is payoff dominated by the 

result of playing strategies s 11and s21- however, these strategies are strictly 

dominated by the equilibrium strategies and rational players will not choose them 

if the game is played only once and independent of any other decision situation. It 

is therefore sufficient to rely on dominant strategies to obtain the strategy 

choices (s12,s22) for rational decisionmakers.  

 It is obvious that the Nash equilibrium is identical with the equilibrium in 

strictly dominating strategies if the latter exists. However, let us look at the 

matrix in Figure 2 which is characterized by the weakly dominating strategies s12 

and s22. The game has two Nash equilibria: the strategy pairs (s11,s21) and 

(s12,s22). The latter, however, is not very convincing because it contains weakly 

dominated strategies. A player cannot do worse by choosing his first instead of 

his second strategy.  

 

Figure 2 : Nash equilibrium in weakly dominated strategies  

   
 s21 s22 

 
 

s11  
 

(1,1) 
 

(0,0) 
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s12   

 
(0,0) 

 
(0,0) 

 

 

We can get rid of the Nash equilibrium (s12,s22) if we apply Reinhard Selten's 

concept of trembling-hand perfectness.5 In order to test whether the equilibrium 

(s12,s22) is trembling-hand perfect, we assume that player 1 considers the 

possibility that with a small probability ε  the hand of player 2 may tremble and 2 

selects strategy s21 instead of s22. Then player 1's expected value of strategy 

s11 is higher than of s12 and he will be very hesitant to choose the latter although 

it is a Nash equilibrium strategy. In the end, both players will choose their first 

strategies with probabilities 1 and do the right thing for the wrong reason. 

  

3. 2 The Multiplicity of Nash Equilibria 

 

It seems that Selten's trembling-hand perfectness is a rather powerful concept 

although a trembling-hand is rather peculiar in a game of complete information  

when players are rational (i.e. both players know the game matrix as it is printed 

in Figure 2). Trembling-hand perfectness is not, however, very helpful for 

discriminating among the three Nash equilibria in the game of Figure 3: the 

strategies pairs (s11,s22) and (s12,s21) and the pair of mixed strategies given by 

p* = q* = 1/2. The equality p* = q* is due to the symmetry of the game. If 

players choose these mixed strategies none of them can reach a higher payoff by 

choosing a different strategy, i.e., p* and q* are mutually best replies. The 

corresponding payoffs of the equilibrium (p*, q*) are 1.5 for each player  - 

therefore the mixed strategy equilibrium is inefficient because both players are 

better off by choosing their first strategies. 

  

                                                 
5Reinhard Selten (1975) introduced this concept as a refinement of the Nash equilibrium. 
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Figure 3: Chicken game 

 
 s21 s22 

 
 

s11  
 

(2,2) 
 

(1,3) 
 

 
s12   

 
(3,1) 

 
(0,0) 

 

 

How we should discriminate among the three Nash equilibria of this game and 

how players can coordinate their choices so as to achieve one of them, is not 

obvious at all. For example, both equilibria in pure strategies are trembling-hand 

perfect. Of course, if player 1's hand trembles and he mixes his pure strategy by 

another probability than p* then player 2 has a best reply which is a pure strategy. 

By this standard, the mixed strategy Nash equilibrium does not appear to be a 

likely candidate for describing the result of the game. Moreover, this equilibrium 

is payoff-dominated by the strategy pair (s11,s21) which gives a value of 2 to 

each player. However, (s11,s21) is not a Nash equilibrium.  

 The nicety of the mixed strategy equilibrium is its symmetry; in contrast, 

the two pure strategy equilibria of the game in Figure 3 discriminate against one 

of the players. The symmetry seems advantageous if players have to coordinate 

their strategies without knowing the other player's strategy. 

 Obviously, it is not sufficient to assume that players are rational and 

maximize their utility as defined by a function which satisfies (1) to guarantee 

that a Nash equilibrium actually occurs. If there are more than one Nash 

equilibrium then we have to make rather strong assumptions so that the players 

can coordinate their strategies on a Nash equilibrium.6 It is not sufficient to 

assume that player 1 assumes that player 2 is rational, and vice versa. Under this 

                                                 
6Tan and da Costa Werlang (1988) have analyzed these assumptions on an axiomatic basis. 
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assumption, the strategy pair (s11,s21) and a payoff of 0 to each of the two 

players - as outcomes of coordination failure - cannot be excluded. With a shot 

of irony Mailath (1998, p.1351) concluded that "the consistency in Nash 

equilibrium seems to require that players know what the other players are doing." 

The discussion of the epistemic conditions for Nash equilibria below will 

demonstrate that this statement does not fall far from the truth. 

 It is not easy to see how players should manage to coordinate on one of 

the efficient pure strategy equilibria of the chicken game in Figure 3, even if they 

can communicate before they choose their strategies, given that this game is 

played only once. Aumann (1985) contains a nice example of 50-person game 

with non-cooperative coalition formation which demonstrates that pre-play 

communication does not help to select a favourable equilibrium outcome: "Three 

million dollars are to be divi ded. Each of the players 1 through 49 can form a 

two-person coalition with player 50, which must split 59:1 (in favor of 50), 

yielding the 'small' partner $50,000. The only other coalition that can get 

anything consists of all the players 1 through 49, which must split evenly, 

yielding each player about $61,000." What will happen if player 50 calls player 1 

and asks him to join with him and get a share of $50,000? Will player 1 reject 

this offer trying to round up the fellow players 2 to 49 in order to form an 

alternative coalition, S, and get the higher share of  $61,000? The latter only 

makes  sense if player 1 can be sure that none of his fellow players will be 

phoned by player 50 to get lured into a coalition with him.  

 Player 1 must have very strong opinions about his fellow players and this 

must hold for each individual player in the group of players 1 to 49 so that player 

1's beliefs are justified. If one of them does not trust the integrity of every single 

player to reject the offer of player 50 the n coalition S is not feasible. In this 

game situation, we can expect that there will be more players who do  not trust the 

others than those who do - in fact, it might be hard to find a single player who will 

resist a proposition made by player 50. If players can converse with each other 
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and make tentative, however, non-binding agreements before decisions have to be 

made, it could well be that more than one gets "fooled" into the belief that 

coalition S will form, but not every potential member of S will be a "fool" and 

believe in the forming of this coalition. Of course, whether a player is a fool 

depends what other players believe and do.      

 

3.3 Unprofitability of Mixed Strategy Equilibria 

 

Not only is the multiplicity of Nash equilibria a drawback of this concept if we 

want to derive principles of individual choice from it - or perhaps even try to 

make use of it for forecasting  or proposing rational decisions. If we assume that 

the payoffs in Figure 1 (above) satisfy one of the following two orderings 

 
A.1 a > c, a > b, d > b, d > c 
          β > α, β > δ, γ > α, γ > δ 
                                                
Α.2     b > a, b > d, c > a, c > d 
           α > β, α > γ, δ > β, δ > γ 
 
 

then both the Nash equilibrium and the maximin solution are in mixed strategies. 

The maximin solution is defined by p° and q° as in (2) above while the Nash 

equilibrium strategies are   

 

(3)   p* = 
δ γ

α β γ δ
−

− − +
 

 

   q* = 
d b

a b c d
−

− − +
 

 

Note that the Nash equilibrium strategy of player 1, p*, is exclusively determined 

by the payoffs of player 2 and the Nash equilibrium strategy of player 2, q*, is 
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exclusively determined by the payoffs of player 2. Consequently, if there are 

changes in the payoffs of player 1 but A.1 or A.2 still apply,7 then the equilibrium 

behavior of player 2 is affected while p* remains unaffected. This rather 

paradoxical result has produced a series of applications, however, some are of 

rather dubious empirical value. (See Frey and Holler, 1998, and a review of 

related results therein.) Moreover, it is easy to show that the payoffs in the Nash 

equilibrium (p*, q*) and the maximin solution (p°, q°) are identical (Holler, 

1990). It is therefore not "profitable" to play the Nash equilibrium strategy, and 

thus rely on the rather specific rationality of the other player required by the 

Nash equilibrium, because a player can assure himself the identical value by 

choosing maximin, irrespective of the strategy choice of the other player. In 

terms of Harsanyi (1977, p. 104-107) we can state the "unprofitability of Nash 

equilibrium" in two -by-two games if both Nash equilibrium and maximin solution 

are in mixed strategies.   

 In case of unprofitable mixed-strategy equilibria, Harsanyi (1977, p. 125) 

strongly suggests that players choose maximin strategies instead of trying to 

reach an equilibrium. As Aumann (1985, p. 668) concludes from studying an 

unprofitable mixed strategy equilibrium: "Under these circumstances, it is hard to 

see why the players would use their equilibrium strategies."   

 Perhaps an answer to this question could be found in an evolutionary 

context: Andreozzi (2001) shows for a dynamic replicator model (see section 5 

below) of the game in Figure 1 for which payoffs are constrained by assumption 

A.2 that the averages of strategy choices concur with p* and q*.  He also shows 

that maximin strategies and Nash equilibrium strategies can co-exist in a dynamic 

model.  

 

3.4 Incomplete Information and Mixed Strategy Equilibrium  

                                                 
7There are weaker conditions such that the Nash equilibrium is mixed and the maximin solution might be 
in pure strategies. 
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Another answer to the Aumann's question "why the players would use their 

equilibrium strategies" can be found in Harsanyi (1973). Harsanyi proposes a 

model under which both players' actual behavior seems to coincide with the 

strategies of the mixed-strategy equilibrium.8 The model assumes that players 

derive payoffs which are subject to small random fluctuations: each player knows 

his true payoff values, but player i is only informed of the mean of player j's 

payoffs. As a consequence, both players will in fact use only pure strategies in 

the equilibrium.  

 The reasoning behind this result is as follows: Suppose that players 1 and 2 

know the payoffs in Figure 1 only approximately and ordering A.2 applies. This 

defines a game G*. Given the random fluctuation in payoffs,  players will be 

close to being indifferent between their two pure strategies in G* if they assume 

that the other player will play his first strategy with a probability p* or q*, 

respectively. At some times their first strategies give them more utility, while at 

other times the second strategy is more profitable. In the  perturbed G*  the 

equilibrium strategies of both players are: "Always use your pure strategy 

yielding a higher  - even if only slightly higher - payoff; but if both of your pure 

strategies yield the same payoff then you may use either of them" (Harsanyi, 

1992, p.58). Note that these strategies do not contain any randomization. 

Moreover, if the probability distributions of the random fluctuations are 

continuous then the probability that the two pure strategies of a player yield the 

same payoff is zero and the possible indifference of the players can be ignored.  

 Given the pure-strategy equilibrium of the G*, the random fluctuations in 

the payoffs will make, on the one hand,  strategy s 11 with a probability slightly 

greater than p* more profitable to player 1 than his second strategy, s12.9 On the 

                                                 
8See also Harsanyi (1992) for an introductory discussion. 
9Recall that (p*, q*) represents the mixed strategy equilibrium of the game in Figure 1 in accordance 
with (3), here specified by payoffs corresponding to A.2.  
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other hand, s12 will be more profitable with a probability slightly smaller than (1- 

p*). Consequently, player 1 will choose s11 with a probability slightly larger than 

p* and s12 with probability slightly smaller than (1- p*). Likewise player 2 will 

choose s21 with a probability slightly smaller than q* and s22 with probability 

slightly larger than (1- q*).   

 If the amplitudes of the random fluctuations are small, the probabilities p* 

and q* are good estimates for the expected equilibrium behavior: if the 

amplitudes of the fluctuations go to zero, the probabilities for choosing s 11 and 

s21 will converge to p* and q*, respectively. However, in the equilibrium of G*, 

both players will play pure strategies and the equilibrium will be strict: deviations 

would inflict utility losses depending on the degree of fluctuation. If the game is 

repeated and payoffs obteined are randomly distributed in each round, outside 

observers can interpret the relative frequencies for the alternative pure strategies 

as players playing mixed strategies.   

 The random fluctuations on the payoffs represent the incomplete 

information of the players with respect to the other player's payoffs, i.e. his or 

her identity as a player. If players do not know their own strategy sets or the 

strategy sets of the other players, then this also implies incomplete information: 

again the identity of at least one player is not determined. This also means that 

from the perspective of at least one player the rules of the game are not well 

defined since the rules of a game determine the strategy sets available for the 

various player. However, incomplete information about the rules of the game can 

be seen as higher order of incomplete information and "different players may 

have different beliefs about the game that is played" (Vilks, 2001, p. 89). If, 

however, the identity of the players is undetermined, the game situation is also 

undetermined and cannot be analyzed in terms of game theory proper. This was 

the state of the art before Harsanyi (1967/68) demonstrated how to describe a 

game of incomplete information in terms of a game of imperfect information  

and then find a solution to the latter.  
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 A game is characterized by perfect information if a player knows all the 

decisions made by him and other players before he has to make a choice. (This is 

the case if all information sets have only one element.) Cases of imperfect 

information prevail if a player forgets how he has decided earlier in the game or 

if he cannot see the choices of the other players which are simultaneous, at least 

in strategic time. Now, Harsanyi's idea was that, if player 1 does not know the 

payoffs of player 2,  let us assume that "nature" decides the payoffs of player 2, 

i.e. what type of player he is. However, we further assume that player 1 cannot 

see the move of nature which makes it an imperfect information game.  

 If player 1 is a Bayesian decision maker and has some prior information 

about the possible types of player 2, he will assign probabilities p1,...,pm if there 

are, in his view, m possible types of player 2. If he has no specific information 

about the probabilities of the various types of player 2, but still distinguishes m 

possible types, player 1 may well apply the principle of insufficient reason and 

assign p = 1/m to each of the m types of player 2.  If the probabilities are 

given - or, in a continuous model, the density function over the type interval - 

then player 1's equilibrium decision coincides with maximizing the expected 

utility under the assumption that each type of player 2 chooses an equilibrium 

strategy.   

 Correspondingly, a mixed strategy of player i can be interpreted as a 

conjecture which expresses the player j's uncertainty about the player i's strategy 

choices while player i will, in fact, choose a pure strategy. Thus, the pair of 

equilibrium strategies (p*, q*) above represents a pair of consistent conjectures 

such that any pair of pure strategies concurs with them - while the selected pure 

strategies are in general not best replies to each other.  

   

4. The Forming of Beliefs 
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Not surprisingly,  mixed strategy equilibria have been interpreted as the belief 

held by all other players concerning a player's action (e.g., Aumann, 1987). The 

uncertainties implied by the mixed-strategy equilibrium have been viewed as an 

expression of the lack of certainty which characterizes the underlying strategic 

situation rather than the result of intentional plans and strategy choices of  

rational players. Given the beliefs incorporated in a mixed strategy equilibrium, 

all actions with strictly positive probabilities are optimal and a player is "free too 

choose" any pure or mixed strategy - and regret after the decisions of the other 

players have been disclosed that he has chosen the "wrong" strategy.   

 Strategic uncertainty, as in mixed strategy equilibrium or in cases of a 

multiplicity of equilibria, are however but one instance where players, explicitly 

or implicitly, form beliefs. A second instance, as we have seen, is given if the 

information of a player is incomplete.  Strategy-related or payoff-related 

uncertainties are of first-order  and players have to form expectations - i.e., 

beliefs - about the facts which create these uncertainties, in order to make 

"adequate" decisions. Whether a decision is adequate, however, will depend on the 

decision and thus on the beliefs of the other players and the beliefs which they 

hold on the beliefs of the other players. The uncertainty about beliefs can be 

modeled in a similar fashion to uncertainty about payoffs, etc. by introducing 

additional types of players. If players are uncertain about what beliefs other 

players hold about other players,  the game is characterized by second-order 

uncertainty - which is, in this case, the result of first-order uncertainty.  

 

4. 1 Beliefs and Solution Concepts 

 

As we have seen, second-order uncertainty can also be the result of strategic 

uncertainty which is the result of the players' mutually interdependent reciprocal 
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expectations about each other's behavior.10 Solution concepts such as Nash 

equilibrium, trembling-hand perfect equilibrium or maximin are tools to reduce 

this interdependency and to get around the problem of discussing beliefs. In cases 

of zero-sum games, the prisoners' dilemma or the game in Figure 2 these tools 

work quite successfully. However, the trembling-hand perfect Nash equilibrium, 

applied to eliminate the Nash equilibrium in weakly dominated strategies in 

Figure 2, makes rather strong assumptions on the beliefs of the players. 

Moreover, these beliefs are inconsistent with the outcome which proposes that 

the weakly dominant strategies are played with certainty. It is the assumed 

"trembling of the hand" which creates the uncertainty in a game of complete 

information which allows the application of the Bayesian principle (i.e., the 

maximization of expected utility) which sorts out weakly dominated strategies to 

be considered as outcomes of the game, even if they are rationalizable as Nash 

equilibrium strategies. 

 In the standard case, Bayesian decisionmaking is applied more directly to 

games of incomplete information, when the beliefs related to the incompleteness 

are transformed by the move of "nature" into probabilities à la Harsanyi 

(1967/68) so that the expected utility calculation (1) applies. This calculation, 

combined with a game structure, defines a Bayesian equilibrium which consists 

of mutually best replies of strategies for all type of players,11 qualified by the 

probability estimates that a specific type prevails. Bayesian decision makers are 

assumed to revise their beliefs by conditioning on new information. However, 

there are hardly any constraints on these probability estimates. A possible 

restriction is given by the assumption of common priors which assumes that the 

probability estimates derive from empirical observations or abstract reasoning 

which are common for all players.  

                                                 
10The Nash equilibrium is "based on the idea that a rational theory should not be a self-destroying 
prophecy which creates an incentive (not) to deviate for those who believe in it" (Selten, 1987, p.79). 
11Note that a type of player can be "justified" by incomplete information on strategy sets, payoffs or 
beliefs.  
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 Alternative restrictions define the sequential equilibrium as introduced by 

Kreps and Wilson (1982a). In the case of a two-person game, it is a combination 

of a pair of strategies which are mutually best replies and a pair of consistent 

beliefs that reflect each player's probability assessment over the nodes in each 

information set. This reflects what players believe what has happened in the 

course of the game so far. Beliefs are consistent if they are consistent with the 

equilibrium strategies and satisfy Bayes' rule whenever it applies. Consequently, 

"starting with every information set, the player whose turn it is to move is using a 

strategy that is optimal for the remainder of the game against the hypothesized 

future moves of its opponent (given by the strategies) and the assessment of past 

moves by other players and by 'nature' " (Kreps and Wilson, 1982b, p. 257). This 

is also required for information sets that will not be reached if players follow the 

prescription of the equilibrium strategies.    

 On the one hand, sequential equilibria are subgame perfect,12  while, on the 

other, the set of trembling-hand perfect equilibria form a subset of sequential 

equilibria. The difference is in the assumption about the information and beliefs 

of the players. Obviously, the beliefs in the trembling-hand perfect equilibria are 

more restrictive than in sequential equilibria. 

  

4. 2 Epistemic Analysis 

 

The refinements of the Nash equilibrium are characterized by more or less 

informal assumptions about how players form and revise their beliefs. Interactive 

                                                 
12Given a game Γ in extensive form (described by a game tree). A Nash equilibrium pair (σ, µ) is 
subgame perfect if, wherever Γ decomposes (at a node X), the corresponding restrictions of  σ and  µ are 
an equilibrium pair for the "remaining" subgame ΓX (Owen, 1995, p.169). In games of perfect information, 
subgame perfectness implies that in each decision node the corresponding player chooses a partial 
strategy (which is part of his subgame perfect strategy) such that it is a best reply to the decisions of  
the other players and his own decisions that follow. If the game is  finite, subgame perfect equilibria are 
determined by backward induction. (See, e.g., the centipede game in Figure 5 below.)   
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epistemology13 is the formal analysis which helps to clarify the assumptions 

about the beliefs and reasoning of  players that are implicit in the various solution 

concepts, i.e.,  what players know and believe about the facts of the game 

(players, strategies and payoffs) and each other's knowledge and beliefs. 

Interactive epistemology is about rigorously and explicitly formulating 

assumptions about the knowledge, the beliefs, and the rationality of the players 

and thus directly tackles the core issue of game theory: the formation of 

expectations when decisions are interdependent. On the one hand, it generalizes 

the idea of a solution concept and, on the other hand,  it substitutes, when it 

seems appropriate, the choice of a specific solution concept, and thus can 

possibly add new insight about the strategic contents of game situations - 

particularly for games of incomplete information and for repeated games in 

which the history may serve to signal the intentions of the players in future 

rounds.14 From this perspective, solution concepts such as Nash equilibrium and 

its refinement are just shorthand concepts of the strategic interaction and the 

related belief formation of a game situation. 

 Applying interactive epistemology, a state of a game comprises a profile 

of strategies, which encode each player's potential to act,  and epistemic types 

which summarize each player's dispositions to hold conditional beliefs about the 

other players' strategies and types. The latter are expressed by means of 

conditional probabilities which satisfy Bayes' rule whenever it applies. Thus the 

players dispositions to hold beliefs is described by a conditional probability 

system.  Higher-order beliefs, i.e., beliefs about beliefs, beliefs about be beliefs 

about beliefs, and so on,  are a constituent element and reflect corresponding 

levels of uncertainty. An epistemic type is, in analogy to the modeling of 

incomplete information on strategy sets or payoffs, a complete and explicit 

                                                 
13See Aumann (1999a,b), Battigalli and Siniscalchi (1999), and Battigalli and Bonanno (1999) for this 
concept. 
14To illustrate the latter: what does it mean if the first player does not choose "down" at the initial 
"history" of the centipede game? For the centipede game, see Figure 5 below. 
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description of an agent's conditional beliefs of arbitrary order. Thus we can 

model the incomplete information on belief systems by sets of epistemic types - 

or, equivalently, by hierarchies of conditional beliefs.  

 In addition to the constraints through applying Bayes' rule, a conditional 

probability systems is assumed to satisfy the notion of common certainty of 

opponent's rationality. Although the intuition behind this concept is self-

explanatory, however, its formal elaboration is beyond the scope of this paper. 

Instead I will illustrate major features of the concepts of epistemic analysis by 

means of an example borrowed from Battigalli and Siniscalchi (1999). Figure 4 

illustrates a signalling game. The set of payoff-relevant types of players 1 and 2 

are given by Θ1 = {θ11,θ12} and  Θ2 = {θ2}, respectively. Since  Θ2 is a 

singleton there is no payoff-related uncertainty about player 2. However, it is 

player 1's private information whether he is of type θ11 or θ12 . This models the 

incomplete information of player 2 with respect to the payoffs of player 1 by the 

imperfect information of whether "nature" has chosen θ11 or θ12. The set of 

pairs of types is  Θ1 × Θ2 = {(θ11,θ2), (θ12,θ2)} = {θ',θ"} where × is the 

Cartesian product. Player 2's belief about the opponent's payoff-relevant type will 

be specified within an epistemic model. 

 

Figure 4: Signalling Game 

 

The set of (final) outcomes is {(L), (R,u), (R,d)} × {θ',θ"}. H = {φ, (R)} is the set 

of partial histories where φ represents the empty history (nothing has been 

observed) and (R) expresses the intermediate outcome "player 2 observed that 

player 1 had chosen R"  For each type θi and each partial history  h (which is an 

element of H), the Cartesian product {h} × {θi}× Θi corresponds to an 

information set for player i in Figure 4. For example, I = {((R), θ2, 

θ11), ((R), θ2, θ12)} describes the information set of payer 2. 
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 In principle, we are interested in players' conditional beliefs for each 

commonly observed partial history h. In the game of Figure 4, however, only the 

belief of player 2 in information set I is relevant - which is conditional to the 

partial history h = (R). Note that formally it is assumed that players have beliefs 

about their own strategies and payoffs, however, it seems appropriate to focus on 

the players' beliefs about their opponents.  

 A rational player i is assumed to be certain of his strategy and type and 

that he makes a best response in terms of beliefs about the other players. 

Moreover, in a dynamic model he might change his beliefs about the other 

players simply because he deviated from his own plan. 

  Battigalli and Siniscalchi (1999) constructed an epistemic model of the 

game in Figure 4. We will not reproduce this model here because this would 

necessitate to introduce a series of definitions and a quite voluminous formal 

apparatus. Instead we will give some intuitive interpretations of the model. First 

assume x > 1. If player 2 observes a partial history (R) then he should "believe" 

that player 1 is of payoff-type θ12 and choose u. This necessitates that (i) player 

1 is of type θ12 , (ii)  he "believes" that player 2 is rational and (iii) he "believes" 

that player 2 believes that he (player 1) is rational and "believes" in the rationality 

of player 2. Of course, this hierarchy of beliefs can be further expanded and 

formalized as common certainty of opponent's rationality. Only if player 2 

assumes that his beliefs are consistent with the beliefs of player 1, including his 

belief that player 1 is rational,  he can interpret the partial history (R) as a signal 

that player 1 is a θ12 payoff-type and will choose strategy u.  

 It is interesting to see that player 1 has no incentive to mislead player 2 in 

forming his beliefs. In case that player 1 is of type θ11, and player 2 chooses u, 

both players are worse off. In this case, player 1 is even worse off than if he 

chooses strategy L.     

 Common certainty of an opponent's rationality refines our prediction 

about the behavior of player 1. This holds in every partial history of the game 
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described by set H.  Battigalli and Siniscalchi point out that the underlying 

argument has the flavor of forward induction . Let us assume player 2's initial 

belief (in partial history φ) was that player 1 is of type θ11. Then he predicts that 

player 1 will select strategy L. If faced with partial history (R) and thus a 

deviation from his original prediction, player 2 attempts to find an explanation 

for this result that is consistent with the assumption that player 1 is rational. This 

implies that player 2 assigns a conditional probability of 1 to payoff-type θ12, 

and results in his decision to pick strategy u. Given common certainty of 

opponent's rationality, player 1 anticipates that player 2 will choose u if he picks 

R so that R is optimal for partial history φ - i.e., at the beginning of the game.   

  If x < 0, however, then rationality and common certainty of an opponent's 

rationality lead to inconsistency. If player 1 is rational and is certain that player 2 

is rational and certain about player 1's rationality in φ and (R), the player 1 should 

expect player 2 to choose d, and he should therefore choose L. Then, however, 

player 2 cannot be certain about player 2's rationality because the latter should 

pick L instead of R if he expects that player 2 chooses d.    

   

4. 3 Rationalizable Strategies 

 

Forward induction implies that a player seeks explanations of his opponent's 

observed behavior under the assumption that the latter is rational. Standard 

solution concepts can restrict the alternative explanations of a player and thus 

lead to outcomes that are, at least empirically, descriptively questionable. For 

instance, this applies to the subgame perfect equilibrium of the centipede game 

in Figure 5 which suggests that the first player chooses "down" (D) at hi s first 

more. However, if player 2 gets a chance to make a decision then this clearly 

indicates that player 1 does not follow the recipe of subgame perfectness. Now, 

player 2 could think that this is because player 1 does not understand the game or 

is not able to apply the backward induction principle, which subgame 
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perfectness prescribes for finite games; or that player 1 wants to signal that he 

does not intend to follow the logic of subgame perfectness and thereby aim for a 

payoff larger than 1. Obviously, player 1 cannot hope for the payoff n if player 2 

is payoff maximizing, since player 2 does not expect that he will have a chance to 

gain n+1while player 1 will receive 0 "with certainty" if the second player's last 

decision node is reached. Note that this is the round which backward induction 

considers first. Player 1 will reason player 2 will choose "down" in period n+1, 

and therefore choose "down" in round n if this period is ever reached. By the 

same reasoning, however, player 2 will choose "down" in round n-1, if he ever has 

a choice.  

 Now following the decision tree backwards from round n+1 to round 1, we 

see that the reasoning of rounds n+1 and n then applies to rounds 1 and 2. 

Consequently, backward induction and subgame perfectness prescribe that player 

1 chooses "down" in the first period. Thus, if player 2 has the possibility to make 

a decision in round 2 he concludes that player 1 does not follow the backward 

induction principle or is a different type then assumed by the game tree - or 

player 1 assumes that player 2 is a different type. Then player 2 finds himself in a 

guessing game to which we apply the epistemic model.  

 

Figure 5: The Centipede Game  

 

The epistemic model amounts to looking for an epistemic type that rationalizes  

the opponents' actions. Because it is based on infinite hierarchies of conditional 

probabilities, it is not, therefore, very restrictive;  in fact, it does not exclude any 

conceivable type of beliefs. It generalizes the idea of rationalizable strategies 

which was s imultaneously introduced by Bernheim (1984) and Pearce (1984).  In 

short, a strategy is rationalizable if it is a best reply to a strategy which is 

rationalizable. Obviously, the mutually best-reply strategies of a Nash 

equilibrium are rationalizable. However, rationalizable strategies are not 
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necessarily equilibrium strategies as is straightforward from the example given in 

Figure 6 (which is borrowed from Bernheim (1984)). 

 

Figure 6: Rationalizable strategies 

 

 b1 b2 b3 b4 

a1 (0,7) (2,5) (7,0) (0,1) 

a2 (5,2) (3,3) (5,2) (0,1) 

a3 (7,0) (2,5) (0,7) (0,1) 

a4 (0,0) (0,-2) (0,0) (10,-1) 

 

In the game of Figure 6, {a1,a2,a3,a4} and {b1,b2,b3,b4} are the sets of pure 

strategies of players 1 and 2, respectively. Note that strategy b4 is never a best 

reply to any of the a-strategies of player 1. It is not, therefore, in the set of 

rationalizable strategies. However, we have to then see that a4 is not 

rationalizable because it is not a best reply to any of the strategies in set 

{b1,b2,b3}. The strategies in the sets {a1,a2,a3} and {b1,b2,b3} are 

rationalizable. The pair (a2, b2) is a Nash equilibrium and the corresponding 

strategies thus are mutually best replies. The remaining strategies in the sets {a1, 

a3} and {b1, b3} form a cycle of best replies: a1 is a best reply to b3 and  b3 is 

best reply to a3 and a3 is a best to b1, while b1 is a best reply to a1, the latter 

relation closes the cycle.  

 The set of rationalizable strategies in a game with complete information is 

obtained by an iterative deletion procedure as applied above. In two -person games 

the outcome coincides with the result of iterated strict dominance. 

Rationalizability selects the strategies which are consistent with common 

certainty of rationality (Tan and da Costa Werlang, 1988). It is straightforward 
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from the above example that beliefs can be consistent with strategies which are 

not mutually best replies, but are rationalizable. 

 

4. 4 Epistemic Conditions for Nash Equilibrium 

 

Aumann and Brandenburger (1995) discuss sufficient epistemic conditions for 

Nash equilibria. They show that, contrary a wide-spread belief in the game 

theoretical literature, common knowledge is not a necessary condition for Nash 

equilibrium. They prove the following theorem (Theorem A) for the 2-Player 

case: "Suppose that the game being played ..., the rationality of the players, and 

their conjectures are mutually known. Then the conjectures constitute a Nash 

equilibrium" (p.1162). - This is an interesting result, but the question is, do 

conjectures constitute a Nash equilibrium as stated in Theorem A? If we follow 

Aumann and Brandenburger and define a mixed strategy of a player as his or her 

conjecture which expresses the player's uncertainty about the other player's 

choices in the form of a probability distribution on the pure strategies of the 

other player, then it could be misleading to speak of a Nash equilibrium if the 

conjectures are consistent as the selected pure strategies are in general not 

mutually best replies to each other. The fact that player i's pure strategy concurs 

with i's conjecture of player j and is consistent j's conjecture, does not imply that 

the conditions for a Nash equilibrium are satisfied by the pure strategies chosen. 

There is a price if we assume that players do not randomize in a mixed strategy 

equilibrium but merely choose pure strategies which are consistent with their 

own conjectures about the choices of other players. 

 Aumann and Brandenburger point out that Theorem A does not call for 

common knowledge, which requires that all know, all know that all know, and so 

on ad infinitum. It is sufficient to know the other player's conjecture and his 

disposition to rationality to make a rational choice. Player i's choice of strategy x 

is rational if the conjecture of player j assigns a positive probability to x and x is 



31 

optimal against i's conjecture (about j's strategy decision) and i's payoff function. 

Of course, i's conjecture depends on his knowledge of j's  payoff function and j's 

disposition to rationality.   

 The formation of conjectures becomes more problematic if there are 

more then two players involved: players i and j can form different conjectures 

with respect to player k. Aumann and Brandenburger assume that players have 

common priors so that differences between conjectures are exclusively due to 

differences in their information. They prove Theorem B: "In an n-Player game, 

suppose that the players have common prior, that their payoff functions and their 

rationality are mutually known, and their conjectures are commonly known. Then 

for each player j, all other players i agree on the same conjecture σ j about j; and 

the resulting profile ( σ1 ,...,σn ) of mixed actions is a Nash equilibrium."  

 Interestingly, here the Nash equilibrium refers to mixed actions (where 

actions are pure strategies) which, of course, are assumed to concur with the 

conjectures. Does this mean that all players i assume that player j mixes his pure 

strategies in accordance with σ j? The answer is not obvious from Aumann and 

Brandenburger, however, they point out that the Nash equilibrium in accordance 

with Theorem B merely needs common knowledge of the players' conjectures, 

not of the game or of the players' rationality. They also argue that the results in 

Theorem A and B are "tight" in the sense that none of the underlying conditions 

can be left out, or even significantly weakened. Nevertheless, as Polak (1999) 

shows, there is a possible trade -off between these conditions. Polak 

demonstrates that if we assume common knowledge of payoffs (i.e. complete 

information) then the common knowledge of rationality is implicit and we do not 

need to assume common priors to assure a Nash equilibrium in case of more than 

two players (see Theorem B).  

. 

5.  Experimental Research and  Evolutionary Game Theory   
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We have seen that the formal apparatus of epistemic games is substantial, even 

for a rather simple game as in Figure 4.  Modeling of infinite hierarchies of 

conditional probabilities is, in particular,  "costly". Consequently, we can expect 

that the analysis of game situations will continue to make use of the Nash 

equilibrium and its refinements and other less sophisticated solution concepts. 

We have seen that these concepts do not always make sense and sometimes they 

describe outcomes that are far off what common sense predicts - and thus 

perhaps not very helpful to describe human behavior. They have, however, 

immensely helped us to increase our understanding of social interaction as, for 

instance, in the fields of industrial organization and of the emergence of norms.15 

Moreover, there is work which elaborates the epistemic conditions of solution 

concepts (see Aumann, 1995, and Aumann and Brandenburger, 1995) and thus 

may help to choose adequate solution concepts or to interpret the results of 

applying them adequately.     

 

5. 1 Ultimatum Game and Fairness 

 

Applying solution concepts concurs with our need to reduce complexity and to 

apply recipes in real-life decision situations. The implications of the interactive 

epistemology concept s eem too demanding for real -world decision makers and 

even the application of less demanding solution concepts is often constrained by 

the human capacity for problem solving - the knowledge of appropriate skills and 

their applications and the ability to adequately interpret the results. In many 

cases, people neither analyze infinite hierarchies of beliefs nor choose that what 

the solution concepts prescribe. For instance, there has been a series tests of the 

so-called ultimatum game. The game is as follows: Players 1 and 2 are "invited" 

to share $100 subject that they agree how to divide this amount: if they do not 

                                                 
15See Aumann (1985) for this argument. 
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agree they get nothing. Player 1 is first to make a proposition how to share the 

money. Player 2's decision to accept or to reject this proposition concludes the 

game. (There is no second round or possibility of renegotiation, etc.).  

 The nicety of this game is that subgame perfectness describes a 

straightforward unique outcome: Player 1 will demand almost all of the money, 

and player 2 will accept a share which is as close to zero as the divisibility of the 

money allows. There is however ample empirical evidence that real-life decision-

makers do not accept the crumbs assigned to them by this equilibrium if they are 

in the position of player 2. Experiments show that they ask for about one quarter 

of the money and reject the proposition of player if it offers less than this 

share.16 

 One explanation for this result is that the money does not represent the 

preferences such that the players' payoffs in the game are identical with money. 

Weibull (2000) maintains that experimental researchers have first of all to test 

for the players' payoff functions before they can claim that their experiments 

analyze the sharing of a fixed cake and test for subgame perfect outcomes. What 

if player 2's payoffs not only depend on his own share but also on the share of the 

other player or the distribution of the cake - and apply concepts of fairness to 

evaluate the outcome? 

 Now, if players apply notions of fairness to the ultimatum game then, of 

course, the subgame perfect equilibrium is an unlikely outcome even if payoffs 

are linear in money. Note that in this case we have two alternatives of modeling 

fairness: either as an argument of the payoff function, as implied by Weibull's 

proposal, or as the application of a solution concept which is different from 

subgame perfectness. It is well known that we can formulate strategy pairs such 

that any sharing proposition can be the outcome of a Nash equilibrium - which is, 

howeve r, generally not subgame perfect  (see, e.g., Rubinstein, 1982).  

                                                 
16See, e.g.,  Güth and Tietz  (1990),  Binmore et al. (1991), Güth et al. (1996), and Bolle (1990) for 
experimental results which falsify the subgame perfectness hypothesis.   
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 Since Nash equilibrium strategies are rationalizable there should be an 

epistemic model implying a belief system which supports any specific sharing 

proposition. Alternatively, the application of a fairness norm can select a specific 

Nash equilibrium. This concurs with Binmore's (widely discussed) view that 

morality is merely a means of coordination: "Just as it is actually within our 

power to move a bishop like a knight when playing Chess, so we can steal, 

defraud, break promises, tell lies, jump lines, talk too much, or eat peas with our 

knives when playing a morality game. But rational folk choose not to cheat for 

much the same reason that they obey traffic signals" (1998, p.6). The problem 

here is that morality is not well defined, e.g., there are almost as many different 

notions of fairness as there are applications and it is not obvious how a society 

can refer to one of them to coordinate on a Nash equilibrium in a voluntary (and 

not exogenously enforceable) way.  

 

5.2 Evolution and Descriptive Theory 

 

Binmore suggests that we leave it to social evolution to develop consistent rules 

of fairness which can be applied to solve the coordination problems of a society. 

If it does not, and  if there are competing societies which are more successful in 

solving the coordination problem, then the society is likely to "die out". Here, 

"dying out" could simply mean that the society chooses different rules and thus 

becomes a society different from the former one. However, history shows that, 

invaded by a competing society (i.e. a mutant), societies also literally vanish 

without transforming into another one. 

 On a personal level, evolution is synonymous with learning rather than 

genetic selection: applying new behavioral concepts, new ways of thinking and 

forms of social interaction. This can be result of deep insights or intensive 

observation of repeating phenomena, scientific studies, or simply imitating other 

individuals who are generally more successful - instead of calculating best 
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replies. In this case, "players need know only what was successful, not why it was 

successful" (Mailath, 1998, p. 1355).  Successful behavior thus becomes more 

prevalent not only because, for instance, market competition selects against 

"unprofitable" behavior, but also because agents imitate successful behavior. 

However, imitating successful behavior is not always a successful pattern of 

behavior: a market might be large enough for two suppliers but overcrowded if 

there are three.17 

 In a recent paper, Selten and Ostmann (2001) introduce the concept of an 

imitation equilibrium. The underlying model consists of a normal form game G 

and a reference structure R. The latter assigns a set R(i) of players to each player 

i of game G which contains those players "who are sufficiently similar to be 

imitated if they are more successful" (p. 113). A second constituent element of 

the model is the strategy of explorative deviations of those players who have 

profits after imitation which are at least as high as the highest in their reference 

groups. Then, an imitation equilibrium is characterized by a strategy vector 

which (a) contains no opportunities of profitable imitations and (b) and is stable 

against exploratory deviations. Of course, an imitation equilibrium depends (a) on 

the reference structure - whether it is universal such that the reference set of a 

player is always the set of all other players, or constrained to subsets - and (b) on 

the available strategies of exploratory deviations: a global imitation equilibrium 

requires stability against any exploratory deviation.  

 Contrary to genetic evolution, the selection mechanism ("market") in 

social evolution is, at least to some extent, subject to the players' discretion and 

therefore possibly under the influence of successful social groups or individuals 

who are then able "to define the rules of the game". Moreover, social evolution 

does not necessarily follow the dynamic patterns of genetic evolution studied in 

                                                 
17Sherman and Willett (1967) contains a market model, which can be modeled as volunteer's dilemma 
(see Diekmann, 1985),  in which the threat of potential entry and overcrowding, resulting in losses, 
discourages entry if suppliers choose their maximin strategy. 
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biology: learning can be fast, especially when it is in the form of imitation, and 

communication can allow for almost immediate changes on a large scale. 

 In situations where we lack sufficient observations, learning has to refer to 

descriptive theories of game behavior if the decision situation is characterized by 

strategic interaction. Experimental studies deliver building blocks for such a 

theory: "Typically, such descriptive theories formalize ideas on limited 

rationality decision-making. Satisficing and the adaptat ion of aspiration levels 

rather than optimization play an important role" (Selten, 1987, pp. 84f.).  

          

5. 3 An Evolutionary Game 

 

Accordingly, evolutionary game theory takes an equilibrium as the outcome of 

adaptation (or learning) and selection rather than as the result of strategic 

reasoning by rational agent. This idea has been formalized by two sets of solution 

concepts: static equilibrium concepts, the evolutionary stable strategies (ESS) 

and its variants, which are closely related to the Nash equilibrium, and a set of 

dynamic concepts which examine the stability of the evolutionary process 

(asymptotic stability or Liapunov stability). In the latter case, the dynamics of the 

process is often described by the standard replicator equation which says that the 

growth of state variable xit (in time t) is defined by the difference between its 

fitness, f(i,xt), and the average fitness of the population, f(xt,xt) where xt is a 

vector which has the elements xit  with i = 1,...,n. Here, xit can be the share of a 

social group in a population, or the share of a strategy (or a mode of behavior) 

picked by a set of players. In the latter case, fitness can be identified by payoffs. 

 The formal expression of the replicator function is: 

 

(R)        dxit/dt = xit [f(i,xt) - f(xt,xt)] 
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A state is a rest point  if the state variables xit, i = 1, ....,n, do not change, i.e., if 

dxit/dt = 0  holds for all derivatives with respect to time t. A rest point is 

Liapunov stable if the dynamic process does not take states which are close to 

the rest point far away in case that the system is destabilized by a external shock. 

A rest point is asymptotically stable if any  dynamically process which starts 

sufficiently close to the rest point converges to this rest point. The specification 

of closeness decides whether the dynamic model is globally or only locally 

asymptotically stable. If the basin of attraction covers the full domain of each 

state variable, then the dynamic system is globally stable.  

Figure 6: Rest Points and Liapunov Stability 

                        Player 2 

  L R 

                           Player 1 T (1,1) (1,0) 

                           B (1,1) (0,0) 

 

We can illustrate some of these concepts by means of the game in Figure 6.18 

First, we can observe that the game has two obvious Nash equilibria in pure 

strategies, however, any mixed strategy on T and B is part of a Nash equilibrium if 

player 2 picks L. But all Nash equilibria of this game are weak. To prepare for the 

evolutionary interpretation of the game, we assume that p is the share of strategy 

T in the population of player 1: either we assume that population 1 consists of  p 

players of type 1 who pick T and (1-p) players of this type who pick B, or we 

think of  type 1 players who randomize on picking T and B with probabilities p 

and (1-p). Correspondingly, q represents the probability (or share) of L in 

population 2. 

 We now describe the possible development of pt and qt by means of 

replicator functions of the type in (R). We get:  

                                                 
18The game is in Samuelson and Zhang (1992); we follow its use and interpretation in Mailath (1998).  
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(R1)               dpt/dt = pt (1-pt)(1- qt)    and   

 

(R2)  dqt/dt = qt (1- qt) 

 

These two differential equations indicate that the system has a rest point for qt = 

1; irrespective of pt, i.e., the composition or behavior of population 1. If qt = 1 

both (R1) and (R2) are zero, i.e., nothing will change as long as there is no 

external shock such that an agent chooses a different strategy. Moreover, the 

system will not be destabilized if there is an external shock so that pt changes as 

long qt = 1. However, what happens if "suddenly" some members of population 2 

choose R instead of L such that qt < 1. (Of course, this change in behavior is not 

"rational" because the R strategy is strictly dominated by L.) As a consequence we 

expect from (R2) that the qt will grow  till qt = 1is achieved and, again, all 

members of population 2 pick L. Moreover, we expect from (R1) that pt , the 

share of members of population 1 who pick T, will increase till either qt = 1 or pt 

= 1 or both conditions are satisfied. If pt is far away from pt = 1 while qt is close 

to qt =  1, since the shock which lead to qt  <1 was small, then we expect that qt = 

1 is reached before pt = 1and there will be a new rest point (pt',1) close the 

combination (pt,1) which characterized the earlier rest point (with t' > t). Thus the 

rest points of the dynamic system described by (R1) and (R2) are Liapunov 

stable. However, they are not asymptotically stable because the derivatives in 

(R1) and (R2) are nonnegative and external shocks will always lead to an increase 

of pt  until pt =1 is reached. As a consequence, an earlier rest point can never be 

reached after a perturbation which affected qt. The exception seems to be with 

state pt =1 and qt = 1. A shock in qt , which implies that parts of the population 2  

play R, induces a growth of  qt till qt = 1 is reached while  pt ( = 1) will not 

change. However, if there is (only) a perturbation in pt such  pt  < 1 and  qt = 1, 
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then it follows from the replicator functions that no forces exist that bring pt 

back to pt = 1. Thus, the state pt =1 and qt = 1 is not asymptotically stable. 

 

5.4 Evolutionary Solution Concepts 

 

For the analysis of an evolutionary game the dynamics is often of interest in 

order to see whether the game describes a stable environment: Liapunov stable or 

even asymptotically stable. If not, the social or political controller (e.g., 

government) might consider to modify the game, possibly by changing the 

payoffs. Evolutionary game also offers static concepts, like ESS, to analyze 

stability problems, which are inherently dynamic, without explicitly analyzing 

dynamics. A (monomorphic) population is evolutionary stable if it satisfies the 

following condition (ESS) if a "mutant strategy" m invades the established 

population described by strategy s. 

 

(ESS)  There is a ε° such that for every ε  < ε° : 

  (1-ε)f(s,s) + εf(s,m) > (1-ε)f(m,s) + ε f(m,m) 

 

Note that the left-hand side of this inequality represents the expected fitness of 

the "established strategy" s, where f(s,s) is the fitness of s when meeting a 

strategy of the same kind and f(s,m) is the fitness of s when meeting a mutant 

strategy. The right-hand side represents the expected fitness of the mutant m 

where f(m,s) and f(m,m) express the fitness of m when m meets s and  m, 

respectively.  

 The value of ε° can be very small, in any case, the inequality condition has 

to hold for all ε < ε°. Thus, if we find a very small ε°, so that entry of m is only 

"marginal", and the inequality condition in ESS holds, then the population s is 

evolutionary stable. ESS implies that  

 (i)  f(s,s) ≥ f(m,s) and  



40 

 (ii) if f(s,s) = f(m,s) then  f(s,m) > f(m,m)  

It is straightforward from (i) that ESS implies a Nash equilibrium where m 

represents the possible deviation. It is also straightforward that there are Nash 

equilibria which do not satisfy ESS, e.g., if  f(s,s) = f(s,m) = f(m,m) holds for all 

and the Nash equilibrium (s,s) is weak. 

 Static solution concepts to evolution seem especially appropriate when 

the dynamics of social evolution is not continuous and the replicator functions 

are inappropriate. I have argued above that learning can be fast and 

communication can allow for almost immediate changes on a large scale. It 

therefore seems appropriate to consider values of ε° which are non-marginal 

when we apply ESS to human interaction. For example, Peters (1997) discusses a 

modified ESS-concept for the analysis of larger invasions by making ε° an 

exogenous parameter. He applies this concept to the emergence of standards 

where critical mass effects and threshold values are substantial and 

communication and learning are essential.    

 There is a strong relationship between static solution concepts, such as 

ESS and Nash equilibrium,  the stability results of the dynamic analysis captured 

by the replicator function.19 For example, if a state xt is asymptotically stable 

then it coincides with a Nash equilibrium. If  xt satisfies ESS then it is 

asymptotically stable if the continuous replicator dynamics apply. However,  

asymptotically stable rest points of the replicator dynamics do not necessarily 

satisfy ESS, e.g, if some of the mutants are  considered with zero probabilities, 

only. 

 If a game is asymmetric, like in Figure 6, then a Nash equilibrium is 

asymptotically stable if and only if it is strict (which is not the case in the game 

of Figure 6) and the dynamics is described by replicator functions. However, if a 

game is asymmetric then ESS does not exist. ESS exists for the symmetrized 

                                                 
19Results are summerized, e.g. in Mailath (1998).   
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game, where players have equal chances to be in the alternative roles which imply 

the asymmetry, if a strict Nash equilibrium exists for this game. From this we can 

conclude that ESS is a more rigorous concept for testing stability than 

asymptotic stability while the latter is more rigorous in this test than the Nash 

equilibrium concept. The Nash equilibrium is, however, more rigorous than the 

rest point concept. For instance, if only strategy R will be played in the game of 

Figure 6, so that qt = 0 then the state pt =1 and qt = 0 is a rest point, but not an 

equilibrium. 

 These results can be directly applied to problem of equilibrium selection 

which,  however, is only relevant if one works in this category. We have outlined 

a series of  arguments above which do not necessarily support this approach. But 

the evolutionary approach does give a nice interpretation of mixed strategy by 

means of introducing heteromorphous populations with members who 

characterized by different pure strategies. (See the game in Figure 6 above.) 

Unfortunately, so far no systematic analysis exists which relates the formation of 

beliefs with the evolutionary approach. Are we more successful, i.e., more likely 

to survive, if we solve the epistemic game for infinite levels of belief formation? 

Or should we simply be more optimistic about the beliefs which other players 

have about ourselves? 

 

6. Final Remarks     

 

The hypothesis of the above brief history of game theory is that the various stages 

of its development are the result of different assumptions on the nature of the 

decision makers, i.e., of the "image of man" underlying the various approaches. 

This explains why I did not discuss cooperative game theory which is 

characterized by the assumption that the players can make binding (and 

enforceable) agreements. As a consequence, the coordination of strategies and 
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solving conflicts are no problem if player want to solve them. What remains is 

the question on what result the players will agree.20   

 Of course, this brief history has omitted many issues of game theory but 

my intention was not to give a complete overview - only to discuss the changes in 

"style" and to relate them to changes in the "image of man".  

 
 
 

                                                 
20See, e.g., Owen (1995) for the Nash solution ( pp. 190-197), the core and stable sets (pp. 218-232) and 
related solution concepts of cooperative game theory. 
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