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introduced the concept of individual rational players and focuses on conflicting
interests. The second stage, modern game theory, is defined by the Nash player
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Harsanyi player who isrationa but knows very little about the other players,
e.g., their payoff functions or the way they form beliefs about other players
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1. Introduction

Is there progress in game theory? Do we know more today in thisfield than the
scholars in the decade after John von Neumann and Oskar Morgenstern published
their pioneering Game Theory and Economic Behavior in 1944, Or, did we only
experience a change in style and language over the last fifty years?* The
hypothesis of the following brief history of game theory is that the various stages
of development are the result of different assumptions bout the nature of the
decision makers underlying the alternative game theoretical approaches. The
following text will not give a historical overview which aims for completeness:?
Rather, it will trace the changesin the "image of man" implicit in the
devel opment of game theory and demonstrate some of consequences that follow.
We will distinguish three major stages in the development of game theory.
Thefirst one, classical gametheory, is defined by John von Neumann's and
Oskar Morgenstern's book. It introduced axioms for the concept of the individual
rational player. Such a player makes consistent decisionsin the face of certain
and uncertain alternatives. But, such a player does not necessarily assume that
other players also act rationally. In contrast, modern game theory is defined by
the Nash player who is not only rational but assumes that al players are rational
to such a degree that they can coordinate their strategies so that a Nash
equilibrium prevails. The more recent, third stage in the devel opment of game

theory, new game theory;, is defined by the Harsanyi player. This player is

1In the categories of Paul Feyerabend, game theory is an art and thus follows its dynamic pattern:
"Thereisno progressin art, but there are different styles and each style is perfect in itself and follows
itsown law. Art is the production of styles and art history isthe history of their sequence”
(Feyerabend, 1984, p.29).

2For example, wewill not discuss whether John von Neumann or Emile Borel should get the credit for
having introduced the minimax theorem: in any case, it was von Neumann who demonstrated its general
validity (see Rives, 1975). Nor will we discuss the work of Ernst Zermelo, Denes Konig and Laszlo
Kamar on the finiteness and determinedness of the chess game. Thiswork preceded the book of von
Neumann and Morgenstern (1944), however, it focuses on analyzing of properties of chess and does
not ask the question which characterizes modern game theory: how should a player behave to achieve a
good result? (See Schwalbe and Walker, 2001.)



rational but knows very little about the other players, e.g., their payoff functions
or the way they form beliefs about other players payoff functions or beliefs. This
limitation initiated two complementary strings of research: the more traditional
one, based on arational choice model, is characterized by the analysis of
interactive gedankenexperiments about forming beliefs (i.e., epistemic games),
while the second string follows an evolutionary approach where the agents rest
content with themselves by imitating the observed successful behavior of other
agents. The latter can be interpreted as the "rational conclusion” of the
constrained cognitive capacity of the decision maker, on the one hand, and the
complexity of the decision situation, on the other, or seen as the consequence
suggested by the results of empirical research which challenge the rational
choice model and itsteleological background (see Frohn et al., 2001).

The discussion of these three stages forms the core of this paper. While
much of the material is elementary and accessible to the non specialist, the paper
does contain some interpretive points that should be of interest to the advanced

student of game theory.

2. Classical Game Theory and the Autonomously Rational Player

Gametheorigs consider the axiomatization of the utility function in the case of
uncertainty amajor contribution in von Neumann and Morgenstern (1944). It
paved the ground for the modeling of rational decision-making when a decision
maker isfaced by lotteries. Thereafter a utility function, uj(.), which satisfies the
expected utility hypothesis, i.e.

(1) U(Ap;B,1-p]) =pui(A) + (1-p)i(B)

is called avon Neumann-Morgenstern utility function. In (1), A and B are events

(or alternatives), p isthe probability that event A occurswhile 1-p isthe



probability of B occuring. Thus[A,p;B,1-p] isalottery (or prospect). Itisa
notational convention to write [A,p;B,1-p] =Aifp=1and[A,p;B,1-p] =Bif p=
0. Of course, [A,p;X,1-p] = A for every alternative X if p=1.

The probabilities p can be related to a model of relative frequencies and
are, in this sense, objective and thus represent risk; or they can be subjective (i.e.
expectations or beliefs) and thus represent uncertainty. The classical distinction
between risk and uncertainty going back to Frank Knight (1921) appears,
however, to be somewhat outdated today. For it does not seem to really matter in
the end whether we believe in the objectivity of relative frequenciesasan
outcome of arandom mechanism, or whether we derive our expectations from
introspection and gedankenexperiments. One way or the other, they are all based
on beliefswhich reflect uncertainty and thus are subjective. If we follow thisview
and define rational behavior under uncertainty as maximizing expected utility in
termswith (1), then our approach isBayesian.

The utility values which the function uj(.) assignsto events (such as
money, cars, or strawberries) are called payoffs. Because of (1) we do not have
to distinguish between payoff and expected payoffs: if player i isindifferent
between the lottery [A,p;B,1-p] and the sure event C then u;j([A,p;B,1-p]) = 4i(C),
i.e., thepayoffsareidentical. If uj(.) satisfies (1) then it iswell defined as utility
function of individual i up to alinear order-preserving transformation. That is, if
Vvi(.) = gjuj(.) + bj and g > 0 then uj(.) and vj(.) represent identical utility
functions: thusuj(.) defines not afunction but afamily of functions and
interpersonal comparison of utility is excluded because aj and bj are not
determined.

The utility function of individual i can be linear, concave or convex in
money - which coincides with risk neutrality, risk aversion, and risk affinity in so
far as money defines the eventsof alottery - or uj(.) can berelated with money in
alessrigid way without violating (1). Thereis, however, ample empirical

evidence that individual behavior does normally not follow a pattern whichis



consistent with (1).2 There are also strong intuitive arguments which challenge
the adequacy of individual axioms which underlie the theory expressed in (1)
such as the so-called Allais paradox. Later Nobel Laureate Maurice Allais
(1953, p 527) demonstrated the proposed inconsistency of the axioms of the von
Neumann Morgenstern utility theory by means of the following example:

(1) People are asked whether they prefer alternative A or aternative B
where

Alternative A: 100 millions for sure

hance of 0.1to win 500 millions
Alternative B: hance of 0.89 to win 100 millions
hance of 0.01to win nothing

(2) People are asked whether they prefer alternative C or alternative D

where

Alterntive C: hance of 0.11to win 100 millions
hance of 0.89 to win nathing

_ ance of 0.1to win 500 millions
Alternative D: . .
ance of 0.9towin nothing

The money values are probably in "old" French francs. The expected values of A,
B, C, and D are (measured in millions) 100, 139, 11 and 50, respectively.
Allaisarguesthat for alarge number of people, especially for those who
are averse against taking risk, one observes that they prefer A toB and D to C.
However, von Neumann Morgenstern utility theory suggeststhat if A is

preferred B then Cis preferred to D. In order to see this, we write these

3See the seminal paper of Kahneman and Tversky (1979) for a prominent critique of the von Neumann
Morgenstern utility function and Machina (1987) for asummary review of the discussion.



preference relationsin terms of the von Neumann Morgenstern utility function

of an agent i:

"A preferred to B" implies: uj(100) > 0.1u;(500) + 0.89u;(100) +
0.01u;j(0)

"C preferred to D" implies: 0.11uj(100) + 0.89 u;(0) > 0.1u;(500) +
0.94(0)

Both inequalities can be reduced to 0.114(100) > 0.14(500) + 0.014(0). Thus
"A preferred to B" implies"C preferred to D". Consequently, "D preferredto C" is
inconsistent with "A preferred to B" and corresponding behavior violates the
expected utility hypothesis (1).

There are, however, also strong argumentsin favor of (1) and the
underlying axioms formalized in von Neumann and Morgenstern (1944). Firstly,
thereisempirical evidence that people tend to correct their behavior if they are
aware that it deviates from (1) or one of itsimplications. Secondly, the
generalization of alternative approaches to decision-making under uncertainty
(such asthe prospect theory of Kahneman and Tversky (1979) and the similarity
approach of Rubinstein (1988)) are also criticized on the basis of contradicting
empirical results and implausibility of underlying assumptions. Moreover, the
alternative approaches tend to be more complicated than the theory behind (1)
and therefore more difficult to apply to real life decision-making and textbook
analysis. Thisis perhaps the main reason why game theorists stick to the von
Neumann-Morgenstern utility function when it comes to decision-making under
uncertainty. The maximization of such a utility function defines therational
player in game situations, i.e. if the outcome of a choice depends on the action

of at least two agents and the agents, in principle, put themselvesinto the shoes



of the other agents when they make their decisions because they know of the
interdependence of decisions.

There are however many ways to specify this knowledge and thus the
image which aplayer has of the other player(s). Von Neumann and Morgenstern
(1944) assumed that a player i does not expect that player j is necessarily
rational: j's behavior may violate the theory embedded in (1) and itsimplications.
In their theory of games, they propose that players should act rational even under
theassumption that other players areirrational, i.e. inconsistent with (1): "... the
rules of rational behavior must provide definitely for the possibility of irrational
conduct on the part of others. ... In whatever way we formulate the guiding
principles and the objective justification of ‘rational behavior,' provisioswill have
to be made for every possible conduct of 'the others™ (p. 32). To characterize this
proposition we will speak of autonomously rational playersin the theory of von

Neumann and Morgenstern.

2.1 TheMinimax Theorem

It may come somewhat of a surprise, but von Neumann and Morgenstern's theory
provides convincing results only if we have a situation in which thereispure
conflict of interest between two players and the decision situation can be

model ed as a zero-sum game. For example, if we assume that the payoff (bi -
Ymatrix in Figure 1 is specified by the payoff valuesa=-a,b=-b,c=-g,andd
= -d, then it describes a zero-sum (two -by-two) game where player 1 hasthe pure

strategies s11 and s12 and player 2 hasthe pure strategies s21 and s22.

Figure 1. Generalized two-by-two game

1 S2




s1i1 | (aa) (bb)

s12 | (c9 (d.d)

In principle, the definition of utility functions given in (1) does not allow for
interpersonal comparison of utility asimplied by the zero-sum property.
However, if thereis pure conflict of interest between two players then the
assumption that a utility gain to player 1 isadutility lossto player 2, and vice
versa, seems appropriate. Note that, if the payoff values of the two playersin each
cell add to the same constant value, then the game is equivalent to a zero-sum
game and can, without loss of information, be transformed into such agame.

Given azero-sum game, von Neumann and Morgenstern (1944) suggest
that each player will choose his maximin strategy. Thus player 1 looks for the
minimum payoff in each line and then earmarks the strategy which isrelated to
the highest payoff of these (two) minimawhile player 2 does likewise for his
payoffsin each column. If the earmarked value of player 1 and the earmarked
value of player 2 add up to zero, then the corresponding strategy pair
characterizes the solution and the related payoff pair describes the outcome.

If the earmarked values do not add up to zero, then player i (i = 1, 2) will
randomize on his strategies such that the expected value is independent of
whether the other player chooses hisfirst or second strategy or any mixture of
these strategies. For instance, if player 1 chooses hisfirst strategy with
probability p and player 2 chooses hisfirst strategy with probability g, then p and
g are determined by the two equalities:

pa+ (1-p)c=pb+ (I-p)dandga + (1-g)b = qg+ (1-q)d



Solving these equalities, we get

d-c d-b
2 P ad = —————
a-b-c+d a-b-g+d

It is easy to show that the (expected) payoff player 1isequal to the negative of
the payoff of player 2 if they choose their corresponding first strategieswith
probabilities p® and ¢°. Thisis the essence of the so-called minimax theorem of
von Neumann and Morgenstern which says that, given atwo-person zero-sum
game, thereis always a pair of strategies, either in pure or mixed strategies, such
that the maximin payoff equalsthe minimax payoff of player 1. Note that in two-
person zero-sum games the maximin payoff of player 2 with respect to hisown
payoff valuesisidentical to the minimax value with respect to the payoffs of
player 1. (Because the payoffs of player 2 are the negative values of the payoffs
of player 1, it is sufficient to specify the payoffs of player 1 only.)

2.2 Limitations of Classical Game Theory

Baumol (1972, p. 575) summarizesthe classical view on game theory which
derives from the minimax theorem: "In game theory, at least in the zero-sum,
two-person case, thereisamajor element of predictability in the behavior of the
second player. Heis out to do everything he can to oppose thefirst player. If he
knows any way to reduce thefirst player's payoff, he can be counted upon to
employ it." However, theminimax theoremloses its power if the players
interests do not contain pure conflict and the zero-sum modeling becomes
inappropriate. Thisis particularly the case if strategic coordination problems

become eminent. For instance, let'sassumethat a>0,a >0,d > 0,d >0, and all



other payoffsin Figure 1 are zero. Then the matrix in Figure 1 represents a
variable-sum gameand the minimax theorem does not, in general, apply
anymore. Assume further, player 1 and 2 have to choose their strategies
simultaneously - or in such away such that they cannot see what the other player
has chosen. Then aplayer hasto solve the problem of how to coordinate his
strategy with the strategy of the other player in order to gain positive payoffs. The
fact that the theory of von Neumann and Morgenstern says little about
coordination problems, in particular, and variable-sum games, in general, concurs
with the problem that the guiding hand of self-interest becomes weak in strategic
situationsif there is no pure conflict of interest and players have difficulties to
form expectations about the behavior of their fellow players.

It is not surprising that the textbook representation of game theory of the
1950s and still in the early 1960s focused on the two - person zero-sum game and
problems of how to calculate the maximin solution if players have more than two
pure strategies (see, e.g., Allen, 1960). An exception is the ingenious book by
Luce and Raiffa (1957) which is still agreat source of inspiration for game
theorists.

The assumption of apure conflict of interest seems also questionable if
there are more than two players. If we try to formulate a zero-sum game for three
players then the problem becomes rather obvious. Moreover, in the case of more
than two playersthereis a potential for coalitions. Von Neumann and
Morgenstern (1944) developed the concept of the characteristic functionin
order to express the value of acoalition. They also suggested a solution concept
for the case of more than two players which may take care of coalition
formation: they simply called this concept solution.* However, neither doesits
application give an answer which coalition will form nor does it determine the

payoffswhich theindividual players get in the course of the game.

4Itisidentical with the concept of stable sets of modern game theory (see Owen, 1995, pp. 243-249).
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It isfair to mention that even more than fifty yearslater the existing
theories of coalition formation provide answersto these two problems only if the
coalition games are rather specific and the competing theories generally provide
divergent answers. However, for the case of variable-sum games and gameswith
more than two players (if they do not form coalitions) a very promising solution

concept has been suggested: the Nash equilibrium and its refinements.

3. Nash Equilibrium and Modern Game Theory

In his doctoral dissertation, John Nash (1951) proved that for finite game- a
game with afinite number of pure strategies assigned to each member of afinite
set N of nplayers - an equilibrium s* exists. s* isastrategy vector s* = (s1*,
-aSi%, .. SY), Where s1* isthe strategy of player, sj* isthe strategy i, and sp* s
the strategy of player n, suchthat uj(s1*, ...,Si*, ..., Sn*) ## Ui(S1*, ...,S -ry
spi*) for all (pure or mixed) strategies sj which player i can choose and for all
playersiin N. Thus, if player i chooses sj* then he cannot achieve a higher payoff
by choosing an aternative strategy sj, given that the other players choose their
strategiesin accordance with vector s*. We say that the strategiesin s* are
mutually best replies to each other and, consequently, s* isaNash equilibrium
If mutually best replies are the result of decisionmaking then, obvioudly,
the Nash equilibrium assumes that players are rational and that they expect the
other players be also rational. This assumption is quite different from the
autonomously rational player which characterizes the theory of von Neumann and
Morgenstern. In fact, the underlying assumption ismore general and even
stronger: "...an equilibrium strategy describes a player's plan of action aswell as
those considerations which support the optimality of this plan™ (Rubinstein,
2000, p.77). One of the considerationsisthat the other players arerational -
another is that the other players choose the (equilibrium) strategies such that the
chosen strategy isabest reply.

11



3.1 Dominant Strategies and Refinements

It is straightforward that Nash equilibrium and maximin solution proposed by von
Neumann and Morgenstern are identical for zero-sum games. If weassumec > a
>d>band b >a >d>ginFigurel, then the matrix represents avariable-sum
game and the strategy pair (s12,522) isaNash equilibrium of thisgame. In fact,
because of the assumed preference relation the matrix describes a specification
of the famous prisoners dilemma game as both players have adominant strategy
and the Nash equilibrium isinefficient inasmuch asit is payoff dominated by the
result of playing strategies s11and s21- however, these strategies are strictly
dominated by the equilibrium strategies and rational playerswill not choose them
if the gameis played only once and independent of any other decision situation. It
istherefore sufficient to rely on dominant strategiesto obtain the strategy
choices(s12,522) for rational decisionmakers.

It is obvious that the Nash equilibrium isidentical with the equilibriumin
strictly dominating strategiesif the latter exists. However, let uslook at the
matrix in Fgure 2 which is characterized by the weakly dominating strategies s12
and s22. The game has two Nash equilibria: the strategy pairs (s11,s21) and
(s12,522). The latter, however, is not very convincing because it contains weakly
dominated strategies. A player cannot do worse by choosing hisfirst instead of
his second strategy.

Figure2: Nash equilibriumin weakly dominated strategies

21 Sz

si1 | (1.1) (0,0)
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12 (0,0 (0,0)

We can get rid of the Nash equilibrium (s12,s22) if we apply Reinhard Selten's
concept of trembling-hand perfectness® In order to test whether the equilibrium
(s12,522) istrembling-hand perfect, we assume that player 1 considers the
possibility that with asmall probability e the hand of player 2 may tremble and 2
selects strategy s21 instead of sp2. Then player 1's expected value of strategy
s11 ishigher than of s12 and he will be very hesitant to choose the latter although
it isaNash equilibrium strategy. In the end, both playerswill choose their first
strategies with probabilities 1 and do the right thing for the wrong reason.

3.2 The Multiplicity of Nash Equilibria

It seemsthat Selten's trembling-hand perfectnessis arather powerful concept
although atrembling-hand is rather peculiar in agame of complete information
when players are rational (i.e. both players know the game matrix asit is printed
in Figure 2). Trembling-hand perfectnessis not, however, very helpful for
discriminating among the three Nash equilibriain the game of Figure 3: the
strategies pairs (s11,522) and (s12,521) and the pair of mixed strategies given by
p* = g* = 1/2. Theequality p* = g* is due to the symmetry of the game. If
players choose these mixed strategies none of them can reach a higher payoff by
choosing adifferent strategy, i.e., p* and g* are mutually best replies. The
corresponding payoffs of the equilibrium (p*, g*) are 1.5 for each player -
therefore the mixed strategy equilibrium is inefficient because both players are
better off by choosing their first strategies.

SReinhard Selten (1975) introduced this concept as arefinement of the Nash equilibrium.
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Figure 3: Chicken game

1 S2

si1 | (22 (1,3)

si2 | (31) (0,0)

How we should discriminate among the three Nash equilibria of this game and
how players can coordinate their choices so as to achieve one of them, is not
obvious at al. For example, both equilibriain pure strategies are trembling-hand
perfect. Of course, if player 1's hand trembles and he mixes his pure strategy by
another probability than p* then player 2 has abest reply which isa pure strategy.
By this standard, the mixed strategy Nash equilibrium does not appear to be a
likely candidate for describing the result of the game. Moreover, this equilibrium
Is payoff-dominated by the strategy pair (s11,S21) which givesavalue of 2 to
each player. However, (S11,521) is not aNash equilibrium.

The nicety of the mixed strategy equilibrium isits symmetry; in contrast,
the two pure strategy equilibria of the game in Figure 3 discriminate against one
of the players. The symmetry seems advantageousif players have to coordinate
thelir strategies without knowing the other player's strategy.

Obvioudly, it isnot sufficient to assume that players are rational and
maximize their utility as defined by afunction which satisfies (1) to guarantee
that a Nash equilibrium actually occurs. If there are more than one Nash
equilibrium then we have to make rather strong assumptions so that the players
can coordinate their strategies on a Nash equilibrium® It is not sufficient to

assume that player 1 assumesthat player 2 isrational, and vice versa. Under this

6Tanand da Costa Werlang (1988) have analyzed these assumptions on an axiomatic basis.
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assumption, the strategy pair (s11,521) and a payoff of O to each of the two
players - as outcomes of coordination failure - cannot be excluded. With a shot
of irony Mailath (1998, p.1351) concluded that "the consistency in Nash
equilibrium seems to require that players know what the other players are doing."
The discussion of the epistemic conditions for Nash equilibria below will
demonstrate that this statement does not fall far from the truth.

It is not easy to see how players should manage to coordinate on one of
the efficient pure strategy equilibriaof the chicken gamein Figure 3, even if they
can communicate before they choose their strategies, given that thisgameis
played only once. Aumann (1985) contains a nice example of 50-person game
with noncooperative coalition formation which demonstrates that pre-play
communication does not help to select afavourable equilibrium outcome: "Three
million dollars are to be divi ded. Each of the players 1 through 49 can form a
two-person coalition with player 50, which must split 59:1 (in favor of 50),
yielding the 'small' partner $50,000. The only other coalition that can get
anything consists of all the players 1 through 49, which must split evenly,
yielding each player about $61,000." What will happen if player 50 calls player 1
and asks him to join with him and get a share of $50,000? Will player 1 reject
this offer trying to round up the fellow players 2 to 49 in order to forman
aternative coalition, S, and get the higher share of $61,000? The latter only
makes senseif player 1 can be sure that none of hisfellow playerswill be
phoned by player 50 to get lured into a coalition with him.

Player 1 must have very strong opinions about hisfellow players and this
must hold for each individual player in the group of players 1 to 49 so that player
I'sbeliefsarejustified. If one of them does not trust the integrity of every single
player to reject the offer of player 50 then coalition Sisnot feasible. In this
game situation, we can expect that there will be more playerswho do not trust the
others than those who do - in fact, it might be hard to find a single player who will

resist a proposition made by player 50. If players can converse with each other
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and make tentative, however, nonbinding agreements before decisions have to be
made, it could well be that more than one gets "fooled" into the belief that
coalition Swill form, but notevery potential member of Swill be a"fool" and
believe in the forming of this coalition. Of course, whether aplayer isafool

depends what other players believe and do.

3.3 Unprofitability of Mixed Strategy Equilibria

Not only isthe multiplicity of Nash equilibriaadrawback of this concept if we
want to derive principles of individual choice fromit- or perhaps even try to
make use of it for forecasting or proposing rational decisions. If we assume that

the payoffsin Figure 1 (above) satisfy one of the following two orderings

Al a>c,a>b,d>b,d>c
b>a,b>d g>a,g>d

A2 b>ab>dc>ac>d
a>b,a>g d>b,d>g

then both the Nash equilibrium and the maximin solution are in mixed strategies.
The maximin solution is defined by p° and g° asin (2) above while the Nash
equilibrium strategies are

d- g
3 =
(3) p a b g+d
. d-b
T b-c+d

Note that the Nash equilibrium strategy of player 1, p*, is exclusively determined
by the payoffs of player 2 and the Nash equilibrium strategy of player 2, g*, is

16



exclusively determined by the payoffs of player 2. Consequently, if there are
changesin the payoffs of player 1 but A.1 or A.2 still apply,” then the equilibrium
behavior of player 2 is affected while p* remains unaffected. Thisrather
paradoxical result has produced a series of applications, however, some are of
rather dubious empirical value. (See Frey and Holler, 1998, and areview of
related results therein.) Moreover, it is easy to show that the payoffs in the Nash
equilibrium (p*, g*) and the maximin solution (p°, g°) areidentical (Holler,
1990). It istherefore not "profitable” to play the Nash equilibrium strategy, and
thus rely on the rather specific rationality of the other player required by the
Nash equilibrium, because a player can assure himself the identical value by
choosing maximin, irrespective of the strategy choice of the other player. In
terms of Harsanyi (1977, p. 104-107) we can state the "unprofitability of Nash
equilibrium” in two -by-two games if both Nash equilibrium and maximin solution
arein mixed strategies.

In case of unprofitable mixed-strategy equilibria, Harsanyi (1977, p. 125)
strongly suggests that players choose maximin strategies instead of trying to
reach an equilibrium. As Aumann (1985, p. 668) concludes from studying an
unprofitable mixed strategy equilibrium: "Under these circumstances, it ishard to
see why the players would use their equilibrium strategies.”

Perhaps an answer to this question could be found in an evolutionary
context: Andreozzi (2001) shows for a dynamic replicator model (see section 5
below) of the gamein Figure 1 for which payoffs are constrained by assumption
A.2that the averages of strategy choices concur with p* and g*. He aso shows
that maximin strategies and Nash equilibrium strategies can co-exist in a dynamic
model.

3.4 Incomplete I nformation and Mixed Strategy Equilibrium

"There are weaker conditions such that the Nash equilibrium is mixed and the maximin solution might be
in pure strategies.
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Another answer to the Aumann's question "why the players would use their
equilibrium strategies' can be found in Harsanyi (1973). Harsanyi proposes a
model under which both players actual behavior seemsto coincide with the
strategies of the mixed strategy equilibrium.? The model assumes that players
derive payoffswhich are subject to small random fluctuations: each player knows
histrue payoff values, but player i isonly informed of the mean of player j's
payoffs. As a consequence, both playerswill in fact use only pure strategiesin
theequilibrium.

The reasoning behind thisresult is as follows: Suppose that players 1 and 2
know the payoffsin Figure 1 only approximately and ordering A.2 applies. This
defines agame G*. Given the random fluctuation in payoffs, playerswill be
close to being indifferent between their two pure strategies in G* if they assume
that the other player will play hisfirst strategy with a probability p* or g*,
respectively. At sometimestheir first strategies give them more utility, while at
other times the second strategy is more profitable. In the perturbed G* the
equilibrium strategies of both playersare: "Always use your pure strategy
yielding ahigher - even if only dightly higher - payoff; but if both of your pure
strategies yield the same payoff then you may use either of them” (Harsanyi,
1992, p.58). Note that these strategies do not contain any randomization.
Moreover, if the probability distributions of the random fluctuations are
continuous then the probability that the two pure strategies of aplayer yield the
same payoff is zero and the possible indifference of the players can be ignored.

Given the pure-strategy equilibrium of the G*, the random fluctuationsin
the payoffswill make, on the one hand, strategy s11 with aprobability dightly
greater than p* more profitable to player 1 than his second strategy, s12.° On the

8See also Harsanyi (1992) for an introductory discussion.
9Recall that (p*, g*) represents the mixed strategy equilibrium of the gamein Figure 1 inaccordance
with (3), here specified by payoffs corresponding to A.2.
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other hand, s12 will be more profitable with a probability slightly smaller than (1-
p*). Consequently, player 1 will choose s11 with aprobability dightly larger than
p* and s12 with probability slightly smaller than (1- p*). Likewise player 2 will
choose sp1 with a probability slightly smaller than g* and sp2 with probability
dightly larger than (1- g*).

If the amplitudes of the random fluctuations are small, the probabilities p*
and g* are good estimates for the expected equilibrium behavior: if the
amplitudes of the fluctuations go to zero, the probabilities for choosing s11 and
s21 will convergeto p* and g*, respectively. However, in the equilibrium of G*,
both players will play pure strategies and the equilibrium will be strict: deviations
would inflict utility losses depending on the degree of fluctuation. If the gameis
repeated and payoffs obteined are randomly distributed in each round, outside
observerscan interpret the relative frequencies for the alternative pure strategies
as players playing mixed strategies.

The random fluctuations on the payoffs represent theincompl ete
information of the players with respect to the other player's payoffs, i.e. hisor
her identity as aplayer. If players donot know their own strategy sets or the
strategy sets of the other players, then this also implies incomplete information:
again the identity of at least one player isnot determined. This also means that
from the perspective of at least one player the rules of the game are not well
defined since the rules of a game determine the strategy sets available for the
various player. However, incomplete information about the rules of the game can
be seen as higher order of incomplete information and "different players may
have different beliefs about the game that is played” (Vilks, 2001, p. 89). If,
however, the identity of the playersis undetermined, the game situation is also
undetermined and cannot be analyzed in terms of game theory proper. Thiswas
the state of the art before Harsanyi (1967/68) demonstrated how to describe a
game of incomplete information in terms of a game of imperfect information

and then find a solution to the latter.
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A gameis characterized by perfect information if a player knows all the
decisions made by him and other players before he has to make a choice. (Thisis
the caseif al information sets have only one element.) Cases of imperfect
information prevail if aplayer forgets how he has decided earlier in the game or
if he cannot see the choices of the other players which are simultaneous, at |east
in strategic time. Now, Harsanyi'sideawasthat, if player 1 does not know the
payoffsof player 2, let usassumethat "nature" decidesthe payoffs of player 2,
I.e. what type of player heis. However, we further assume that player 1 cannot
see the move of nature which makesit an imperfect information game.

If player 1 isaBayesian decision maker and has some prior information
about the possible types of player 2, hewill assign probabilitiesp1,...,pm if there
are, in hisview, m possible types of player 2. If he has no specific information
about the probabilities of the various types of player 2, but still distinguishesm
possible types, player 1 may well apply the principle of i nsufficient reason and
assign p = 1/m to each of the m types of player 2. If the probabilities are
given - or, in a continuous model, the density function over the type interval -
then player 1's equilibrium decision coincides with maximizing the expected
utility under the assumption that each type of player 2 chooses an equilibrium
Strategy.

Correspondingly, a mixed strategy of player i can be interpreted asa
conjecture which expresses the player j's uncertainty about the player i's strategy
choiceswhile player i will, in fact, choose a pure strategy. Thus, the pair of
equilibrium strategies (p*, g*) above represents apair of consistent conjectures
such that any pair of pure strategies concurs with them - while the selected pure

strategies are in general not best replies to each other.

4. The Forming of Beliefs
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Not surprisingly, mixed strategy equilibria have been interpreted as the belief
held by all other players concerning a player's action (e.g., Aumann, 1987). The
uncertaintiesimplied by the mixed strategy equilibrium have been viewed as an
expression of the lack of certainty which characterizes the underlying strategic
situation rather than the result of intentional plans and strategy choices of
rational players. Given the beliefs incorporated in amixed strategy equilibrium,
all actionswith strictly positive probabilities are optimal and aplayer is"freetoo
choose" any pure or mixed strategy - and regret after the decisions of the other
players have been disclosed that he has chosen the "wrong" strategy.

Strategic uncertainty, asin mixed strategy equilibrium or in cases of a
multiplicity of equilibria, are however but one instance where players, explicitly
or implicitly, form beliefs. A second instance, as we have seen, isgivenif the
information of aplayer isincomplete. Strategy-related or payoff-related
uncertainties are of first-order and players have to form expectations- i.e.,
beliefs - about the facts which create these uncertainties, in order to make
"adequate” decisons. Whether adecision is adequate, however, will depend on the
decision and thus on the beliefs of the other players and the beliefs which they
hold on the beliefs of the other players. The uncertainty about beliefs can be
modeled in asimilar fashion to uncertainty about payoffs, etc. by introducing
additional types of players. If players are uncertain about what beliefs other
players hold about other players, the game is characterized by second-order

uncertainty - which s, in this case, the result of first-order uncertainty.

4.1 Beliefsand Solution Concepts

Aswe have seen, second-order uncertainty can also be the result of strategic

uncertainty which isthe result of the players mutually interdependent reciprocal
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expectations about each other's behavior.® Solution concepts such as Nash
equilibrium, trembling-hand perfect equilibrium or maximin are toolsto reduce
thisinterdependency and to get around the problem of discussing beliefs. In cases
of zero-sum games, the prisoners dilemmaor the game in Figure 2 these tools
work quite successfully. However, the trembling-hand perfect Nash equilibrium,
applied to eliminate the Nash equilibrium in weakly dominated strategiesin
Figure 2, makes rather strong assumptions on the beliefs of the players.
Moreover, these beliefs are inconsistent with the outcome which proposes that
the weakly dominant strategies are played with certainty. It is the assumed
"trembling of the hand" which creates the uncertainty in agame of complete
information which allows the application of the Bayesian principle (i.e., the
maximization of expected utility) which sorts out weakly dominated strategies to
be considered as outcomes of the game, even if they are rationalizable as Nash
equilibrium strategies.

In the standard case, Bayesian decisionmaking is applied more directly to
games of incompl ete information, when the beliefs related to the incompl eteness
are transformed by the move of "nature" into probabilities ala Harsanyi
(1967/68) so that the expected utility calculation (1) applies. This calculation,
combined with a game structure, defines a Bayesian equilibrium which consists
of mutually best replies of strategies for all type of players qualified by the
probability estimates that a specific type prevails. Bayesian decision makers are
assumed to revise their beliefs by conditioning on new information. However,
there are hardly any constraints on these probability estimates. A possible
restriction is given by the assumption of common priorswhich assumesthat the
probability estimates derive from empirical observations or abstract reasoning

which are common for all players.

10The Nash equilibrium is "based on the idea that a rational theory should not be a self-destroying
prophecy which creates an incentive (not) to deviate for those who believeinit" (Selten, 1987, p.79).
HNote that atype of player can be"justified" by incomplete information on strategy sets, payoffs or
beliefs.
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Alternative restrictions define the sequential equilibrium as introduced by
Kreps and Wilson (19824). In the case of atwo-person game, it is acombination
of apair of strategies which are mutually best replies and apair of consistent
beliefs that reflect each player's probability assessment over the nodes in each
information set. Thisreflects what players believe what has happened in the
course of the game so far. Beliefs are consistent if they are consistent with the
equilibrium strategies and satisfy Bayes' rule whenever it applies. Consequently,
"starting with every information set, the player whoseturnitisto moveisusing a
strategy that is optimal for the remainder of the game against the hypothesized
future moves of its opponent (given by the strategies) and the assessment of past
moves by other players and by 'nature’ " (Kreps and Wilson, 1982b, p. 257). This
is also required for information sets that will not be reached if playersfollow the
prescription of the equilibrium strategies.

On the one hand, sequential equilibria are subgame perfect,*? while, on the
other, the set of trembling-hand perfect equilibriaform a subset of sequential
equilibria. The difference isin the assumption about the information and beliefs
of the players. Obviousdly, the beliefsin the trembling-hand perfect equilibriaare

more restrictive than in sequential equilibria.

4. 2 Epistemic Analysis

The refinements of the Nash equilibrium are characterized by more or less

informal assumptions about how players form and revise their beliefs. Interactive

12Gijven a game Gin extensive form (described by agametree). A Nash equilibrium pair (s, n) is
subgame perfect if, wherever Gdecomposes (at anode X), the corresponding restrictions of s and Mmare
an equilibrium pair for the "remaining" subgame Gy (Owen, 1995, p.169). In games of perfect information,
subgame perfectness implies that in each decision node the corresponding player chooses a partial
strategy (which is part of his subgame perfect strategy) such that it is a best reply to the decisions of
the other players and his own decisions that follow. If the game is finite, subgame perfect equilibria are
determined by backward induction. (See, e.g., the centipede gamein Figure 5 below.)
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epistemol ogy*? is the formal analysis which helpsto clarify the assumptions
about the beliefs and reasoning of playersthat are implicit in the various solution
concepts, i.e., what players know and believe about the facts of the game
(players, strategies and payoffs) and each other's knowledge and beliefs,

I nteractive epistemology is about rigorously and explicitly formulating
assumptions about the knowledge, the beliefs, and the rationality of the players
and thus directly tacklesthe core issue of game theory: the formation of
expectations when decisions are interdependent. On the one hand, it generalizes
theidea of a solution concept and, on the other hand, it substitutes, when it
seems appropriate, the choice of a specific solution concept, and thus can
possibly add new insight about the strategic contents of game situations-
particularly for games of incomplete information and for repeated gamesin
which the history may serve to signal the intentions of the playersin future
rounds.*# From this perspective, solution concepts such as Nash equilibrium and
its refinement are just shorthand concepts of the strategic interaction and the
related belief formation of a game situation.

Applying interactive epistemol ogy, a state of a game comprises a profile
of strategies, which encode each player's potential to act, and epistemic types
which summarizeeach player's dispositions to hold conditional beliefs about the
other players strategies and types. The latter are expressed by means of
conditional probabilities which satisfy Bayes rule whenever it applies. Thusthe
players dispositions to hold beliefsis described by a conditional probability
system. Higher-order beliefs, i.e., beliefs about beliefs, beliefs about be beliefs
about beliefs, and so on, are a constituent element and reflect corresponding
levels of uncertainty. Anepistemic typeis, in analogy to the modeling of

incomplete information on strategy sets or payoffs, a complete and explicit

135ee Aumann (1999a,b), Battigalli and Siniscalchi (1999), and Battigalli and Bonanno (1999) for this
concept.

1470 illustrate the latter: what does it mean if the first player does not choose "down" at theinitial
"history" of the centipede game? For the centipede game, see Figure 5 below.
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description of an agent's conditional beliefs of arbitrary order. Thus we can
model the incomplete information on belief systems by sets of epistemic types-
or, equivalently, by hierarchies of conditional beliefs.

In addition to the constraints through applying Bayes rule, a conditional
probability systemsis assumed to satisfy the notion of common certainty of
opponent's rationality. Although the intuition behind this concept is self-
explanatory, however, its formal elaboration is beyond the scope of this paper.
Instead | will illustrate major features of the concepts of epistemic analysis by
means of an example borrowed from Battigalli and Siniscalchi (1999). Figure 4
illustrates a signalling game. The set of payoff-relevant types of players 1 and 2
aregiven by Q1 ={0q11.,d12} and Q2 ={q2}, respectively. Since Q2isa
singleton there is no payoff-related uncertainty about player 2. However, it is
player 1's private information whether heis of typeq11 or q12 . This models the
incomplete information of player 2 with respect to the payoffs of player 1 by the
imperfect information of whether "nature” has chosen 11 or g1 2. The set of
pairs of typesis Q1 x Q2 ={(d11,02), (412,92)} ={d.9"} where x isthe
Cartesian product. Player 2's belief about the opponent's payoff-relevant type will
be specified within an epistemic model.

Figure 4: Signalling Game

The set of (final) outcomesis{(L), (R,u), (Rd)} x{q,q"}. H={f, (R)} isthe set
of partial historieswheref represents the empty history (nothing has been
observed) and (R) expresses the intermediate outcome "player 2 observed that
player 1 had chosen R" For each type 0j and each partial history h (whichisan
element of H), the Cartesian product { h} x {gj}x Qj correspondsto an
information set for player i in Figure 4. For example, | = {((R), 02,

d11): ((R), a2, q12)} describes the i nformation set of payer 2.
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In principle, we are interested in players conditional beliefs for each
commonly observed partial history h. In the game of Figure 4, however, only the
belief of player 2 ininformation set | isrelevant- which is conditional to the
partial history h = (R). Note that formally it is assumed that players have beliefs
about their own strategies and payoffs, however, it seems appropriate to focus on
the players beliefs about their opponents.

A rational player i is assumed to be certain of his strategy and type and
that he makes a best response in terms of beliefs about the other players.
Moreover, in adynamic model he might change his beliefs about the other
players simply because he deviated from his own plan.

Battigalli and Siniscalchi (1999) constructed an epistemic model of the
gamein Figure 4. We will not reproduce this model here because thiswould
necessitate to introduce a series of definitions and a quite voluminous formal
apparatus. Instead we will give some intuitive interpretations of the model. First
assumex > 1. If player 2 observes a partia history (R) then he should "believe"
that player 1 isof payoff-type g12 and choose u. This necessitates that (i) player
lisof typeqi2, (ii) he"believes' that player 2 isrationa and (iii) he "believes'
that player 2 believesthat he (player 1) isrational and "believes' in the rationality
of player 2. Of course, this hierarchy of beliefs can be further expanded and
formalized as common certainty of opponent’s rationality. Only if player 2
assumes that his beliefs are consistent with the beliefs of player 1, including his
belief that player 1 isrational, he caninterpret the partial history (R) asasignal
that player 1isa (12 payoff-type and will choose strategy ul.

It isinteresting to see that player 1 has no incentive to mislead player 2 in
forming hisbeliefs. In case that player 1 isof typeq11, and player 2 chooses u,
both players are worse off. In this case, player 1 is even worse off than if he
chooses strategy L.

Common certainty of an opponent's rationality refines our prediction

about the behavior of player 1. Thisholdsin every partia history of the game
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described by set H. Battigalli and Siniscalchi point out that the underlying
argument has the flavor of forward induction. Let us assume player 2'sinitial
belief (in partial history f ) wasthat player 1 isof type 1 1. Then he predicts that
player 1 will select strategy L. If faced with partial history (R) and thusa
deviation from his origina prediction, player 2 attemptsto find an explanation
for this result that is consistent with the assumption that player 1isrational. This
implies that player 2 assigns a conditional probability of 1 to payoff-typedi2,
and results in his decision to pick strategy u. Given common certainty of
opponent's rationality, player 1 anticipates that player 2 will choose u if he picks
R so that R isoptimal for partial history f - i.e., at the beginning of the game.

If x <0, however, then rationality and common certainty of an opponent's
rationality lead to inconsistency. If player 1isrational and is certain that player 2
isrational and certain about player 1'srationality in f and (R), the player 1 should
expect player 2 to choose d, and he should therefore choose L. Then, however,
player 2 cannot be certain about player 2's rationality because the latter should
pick L instead of R if he expects that player 2 chooses d.

4. 3 Rationalizable Strategies

Forward induction implies that a player seeks explanations of his opponent's
observed behavior under the assumption that the latter isrational. Standard
solution concepts can restrict the alternative explanations of a player and thus
lead to outcomes that are, at least empirically, descriptively questionable. For
instance, this applies to the subgame perfect equilibrium of the centipede game
in Figure 5 which suggests that the first player chooses "down™ (D) at hi sfirst
more. However, if player 2 gets a chance to make a decision then this clearly
indicates that player 1 does not follow the recipe of subgame perfectness. Now,
player 2 could think that thisis because player 1 does not understand the game or

isnot able to apply the backward induction principle, which subgame
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perfectness prescribes for finite games; or that player 1 wantsto signal that he
does not intend to follow the logic of subgame perfectness and thereby aim for a
payoff larger than 1. Obviously, player 1 cannot hope for the payoff nif player 2
Is payoff maximizing, since player 2 does not expect that he will have achanceto
gain n+1lwhile player 1 will receive 0 "with certainty" if the second player's last
decision node is reached. Note that thisis the round which backward induction
considersfirst. Player 1 will reason player 2 will choose "down" in period n+1,
and therefore choose "down™ in round n if this period is ever reached. By the
same reasoning, however, player 2 will choose "down" in round n-1, if he ever has
achoice.

Now following the decision tree backwards from round n+1 to round 1, we
see that the reasoning of rounds n+1 and n then appliesto rounds 1 and 2.
Consequently, backward induction and subgame perfectness prescribe that player
1 chooses "down" in the first period. Thus, if player 2 has the possibility to make
adecision in round 2 he concludesthat player 1 does not follow the backward
induction principle or is a different type then assumed by the game tree- or
player 1 assumes that player 2 isadifferent type. Then player 2 finds himself in a

guessing game to which we apply the epistemic model.

Figure 5: The Centipede Game

The epistemic model amounts to looking for an epistemic type that rationalizes
the opponents' actions. Because it is based on infinite hierarchies of conditional
probabilities, it is not, therefore, very restrictive; in fact, it does not exclude any
conceivabletype of beliefs. It generalizes the idea of rationalizable strategies
which was simultaneously introduced by Bernheim (1984) and Pearce (1984). In
short, astrategy isrationalizableif it is abest reply to astrategy whichis
rationalizable. Obvioudly, the mutually best-reply strategies of a Nash

equilibrium are rationalizable. However, rationalizable strategies are not
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necessarily equilibrium strategies asis straightforward from the example givenin

Figure 6 (which is borrowed from Bernheim (1984)).

Figure 6: Rationalizable strategies

ay (0,0) (0,-2) (0,0) (10,-1)

Inthe game of Figure 6, {a1,ap,a3,84} axd{b1,bp,b3,bs} are the setsof pure
strategies of players 1 and 2, respectively. Note that strategy by is never a best
reply to any of the a-strategies of player 1. It isnot, therefore, in the set of
rationalizable strategies. However, we have to then see that a4 is not
rationalizable because it is not a best reply to any of the strategiesin set
{b1,b2,b3}. The strategies in the sets { & ,ap,a3} and {b1,bp,bg} are
rationalizable. The pair (&, bp) isaNash equilibrium and the corresponding
strategies thus are mutually best replies. The remaining strategiesin the sets{ aq,
ag} and{b1, bz} form acycle of best replies: a1 isabest reply tobgz and bz is
best reply to ag and ag isabest to b1, whilebq isabest reply to &, the latter
relation closesthecycle.

The set of rationalizable strategies in agame with complete information is
obtained by an iterative deletion procedure as applied above. In two -person games
the outcome coincides with the result of iterated strict dominance.
Rationalizability selects the strategies which are consistent with common

certainty of rationality (Tan and da Costa Werlang, 1988). It is straightforward
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from the above example that beliefs can be consistent with strategies which are

not mutually best replies, but arerationalizable.

4. 4 Epistemic Conditions for Nash Equilibrium

Aumann and Brandenburger (1995) discuss sufficient epistemic conditions for
Nash equilibria. They show that, contrary awide-spread belief in the game
theoretical literature, common knowledge is not a necessary condition for Nash
equilibrium. They prove the following theorem (Theorem A) for the 2-Player
case: " Suppose that the game being played ..., the rationality of the players, and
their conjectures are mutually known. Then the conjectures constitute a Nash
equilibrium” (p.1162). - Thisis an interesting result, but the question is, do
conjectures constitute a Nash equilibrium as stated in Theorem A? If we follow
Aumann and Brandenburger and define a mixed strategy of a player as hisor her
conjecture which expresses the player's uncertainty about the other player's
choicesin the form of a probability distribution on the pure strategies of the
other player, then it could be misleading to speak of a Nash equilibrium if the
conjectures are consistent as the selected pure strategies are in general not
mutually best replies to each other. The fact that player i's pure strategy concurs
with i's conjecture of player j and is consistent j's conjecture, does not imply that
the conditions for a Nash equilibrium are satisfied by the pure strategies chosen.
Thereisapriceif we assume that players do not randomize in a mixed strategy
equilibrium but merely choose pure strategies which are consistent with their
own conjectures about the choices of other players.

Aumann and Brandenburger point out that Theorem A does not call for
common knowledge, which requiresthat al know, al know that all know, and so
on ad infinitum. It is sufficient to know the other player's conjecture and his
disposition to rationality to make arational choice. Player i's choice of strategy x

isrational if the conjecture of player j assigns a positive probability tox and x is
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optimal against i's conjecture (about j's strategy decision) and i's payoff function.
Of coursg, i's conjecture depends on his knowledge of j's payoff functionand j's
disposition to rationality.

The formation of conjectures becomes more problematic if there are
more then two playersinvolved: playersi and j can form different conjectures
with respect to player k. Aumann and Brandenburger assume that players have
common priorsso that differences between conjectures are exclusively due to
differences in their information. They prove Theorem B: "In an n-Player game,
suppose that the players have common prior, that their payoff functions and their
rationality are mutually known, and their conjectures are commonly known. Then
for each player j, al other playersi agree on the same conjecture s j about j; and
theresulting profile(s1 ,...,Sn ) of mixed actionsisaNash equilibrium.”

Interestingly, here the Nash equilibrium refers to mixed actions (where
actions are pure strategies) which, of course, are assumed to concur with the
conjectures. Does this mean that al playersi assume that player j mixes his pure
strategies in accordance with s j? The answer is not obvious from Aumann and
Brandenburger, however, they point out that the Nash equilibrium in accordance
with Theorem B merely needs common knowledge of the players conjectures,
not of the game or of the players rationality. They also argue that the resultsin
Theorem A and B are "tight” in the sense that none of the underlying conditions
can be left out, or even significantly weakened. Nevertheless, as Polak (1999)
shows, there is a possible trade-off between these conditions. Polak
demonstratesthat if we assume common knowledge of payoffs (i.e. complete
information) then the common knowledge of rationality isimplicit and we do not
need to assume common priorsto assure a Nash equilibrium in case of more than

two players (see Theorem B).

5. Experimental Research and Evolutionary Game Theory
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We have seen that the formal apparatus of epistemic gamesis substantial, even
for arather simple game asin Figure 4. Modeling of infinite hierarchies of
conditional probabilitiesis, in particular, "costly". Consequently, we can expect
that the analysis of game situations will continue to make use of the Nash
equilibrium and its refinements and other |ess sophisticated solution concepts.
We have seen that these concepts do not always make sense and sometimes they
describe outcomes that are far off what common sense predicts - and thus
perhaps not very helpful to describe human behavior. They have, however,
immensely helped us to increase our understanding of socia interaction as, for
instance, in the fields of industrial organization and of the emergence of norms*®
Moreover, there iswork which elaborates the epistemic conditions of solution
concepts (see Aumann, 1995, and Aumann and Brandenburger, 1995) and thus
may help to choose adequate solution concepts or to interpret the results of

applying them adequately.

5. 1 Ultimatum Game and Fairness

Applying solution concepts concurs with our need to reduce complexity and to
apply recipesin real-life decision situations. The implications of the interactive
epistemology concept seem too demanding for real -world decision makers and
even the application of less demanding solution concepts is often constrained by
the human capacity for problem solving - the knowledge of appropriate skills and
their applications and the ability to adequately interpret the results. In many
cases, people neither analyze infinite hierarchies of beliefs nor choose that what
the solution concepts prescribe. For instance, there has been a series tests of the
so-called ultimatum game. The game is as follows: Players 1 and 2 are "invited"

to share $100 subject that they agree how to divide this amount: if they do not

155ee Aumann (1985) for this argument.
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agree they get nothing. Player 1 isfirst to make a proposition how to share the
money. Player 2's decision to accept or to reject this proposition concludes the
game. (Thereisno second round or possibility of renegotiation, etc.).

The nicety of thisgame isthat subgame perfectness describes a
straightforward unique outcome: Player 1 will demand almost all of the money,
and player 2 will accept a share which is as close to zero as the divisibility of the
money alows. There is however ample empirical evidence that real -life decision-
makers do not accept the crumbs assigned to them by this equilibrium if they are
in the position of player 2. Experiments show that they ask for about one quarter
of the money and reject the proposition of player if it offerslessthan this
share.16

One explanation for thisresult is that the money does not represent the
preferences such that the players payoffsinthe game are identical with money.
Weibull (2000) maintains that experimental researchers have first of all to test
for the players payoff functions before they can claim that their experiments
analyze the sharing of afixed cake and test for subgame perfect outcomes. What
if player 2's payoffs not only depend on his own share but also on the share of the
other player or the distribution of the cake - and apply concepts of fairness to
evaluate the outcome?

Now, if players apply notions of fairness to the ultimatum game then, of
course, the subgame perfect equilibrium is an unlikely outcome even if payoffs
arelinear in money. Note that in this case we have two aternatives of modeling
fairness: either as an argument of the payoff function, asimplied by Weibull's
proposal, or as the application of a solution concept which is different from
subgame perfectness. It iswell known that we can formulate strategy pairs such
that any sharing proposition can be the outcome of a Nash equilibrium - whichiis,

however, generally not subgame perfect (see, e.g., Rubinstein, 1982).

16geg, eg., Guthand Tietz (1990), Binmoreet d. (1991), Giith et al. (1996), and Bolle (1990) for
experimental results which falsify the subgame perfectness hypothesis.
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Since Nash equilibrium strategies are rationalizabl e there should be an
epistemic model implying a belief system which supports any specific sharing
proposition. Alternatively, the application of afairness norm can select a specific
Nash equilibrium. This concurs with Binmore's (widely discussed) view that
morality ismerely ameans of coordination: "Just asit is actually within our
power to move a bishop like a knight when playing Chess, so we can steal,
defraud, break promises, tell lies, jump lines, talk too much, or eat peas with our
knives when playing a morality game. But rational folk choose not to cheat for
much the same reason that they obey traffic signals’ (1998, p.6). The problem
here isthat morality is not well defined, e.g., there are almost as many different
notions of fairness as there are applications and it is not obvious how a society
can refer to one of them to coordinate on a Nash equilibrium in avoluntary (and

not exogenously enforceable) way.

5.2 Evolution and Descriptive Theory

Binmore suggests that we leave it to social evolution to develop consistent rules
of fairness which can be applied to solve the coordination problems of a society.
If it doesnot, and if there are competing societies which are more successful in
solving the coordination problem, then the society islikely to "die out”. Here,
"dying out" could simply mean that the society chooses different rules and thus
becomes a society different from the former one. However, history shows that,
invaded by a competing society (i.e. amutant), societies also literaly vanish
without transforming into another one.

On apersonad level, evolution is synonymous with learning rather than
genetic selection: applying new behavioral concepts, new ways of thinking and
forms of social interaction. This can be result of deep insights or intensive
observation of repeating phenomena, scientific studies, or simply imitating other

individuals who are generally more successful - instead of calculating best
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replies. In this case, "players need know only what was successful, not why it was
successful" (Mailath, 1998, p. 1355). Successful behavior thus becomes more
prevalent not only because, for instance, market competition selects against
"unprofitable" behavior, but also because agentsimitate successful behavior.
However, imitating successful behavior is not always a successful pattern of
behavior: a market might be large enough for two suppliers but overcrowded if
there are three.l”

In arecent paper, Selten and Ostmann (2001) introduce the concept of an
imitation equilibrium. The underlying model consists of anormal form game G
and areference structureR. The latter assigns a set R(i) of playersto each player
i of game G which contains those players "who are sufficiently similar to be
imitated if they are more successful” (p. 113). A second constituent element of
the model isthe strategy of explorative deviations of those players who have
profits after imitation which are at |east as high as the highest in their reference
groups. Then, an imitation equilibriumis characterized by a strategy vector
which (a) contains no opportunities of profitable imitations and (b) and is stable
against exploratory deviations. Of course, an imitation equilibrium depends (a) on
thereference structure - whether it is universal such that the reference set of a
player is awaysthe set of all other players, or constrained to subsets- and (b) on
the avail able strategies of exploratory deviations: aglobal imitation equilibrium
requires stability against any exploratory deviation.

Contrary to genetic evolution, the selection mechanism ("market") in
social evolution is, at |east to some extent, subject to the players discretion and
therefore possibly under the influence of successful social groups or individuals
who are then able "to define the rules of the game". Moreover, social evolution

does not necessarily follow the dynamic patterns of genetic evolution studied in

17sherman and Willett (1967) contains a market model, which can be modeled as volunteer's dilemma
(see Diekmann, 1985), inwhich thethreat of potential entry and overcrowding, resulting in losses,
discourages entry if suppliers choose their maximin strategy.
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biology: learnng can be fast, especially when it isin the form of imitation, and
communication can allow for amost immediate changes on alarge scale.

In situations where we lack sufficient observations, learning hasto refer to
descriptive theories of game behavior if the decision situation is characterized by
strategic interaction. Experimental studies deliver building blocks for such a
theory: "Typically, such descriptive theories formalize ideas on limited
rationality decision-making. Satisficing and the adaptation of aspiration levels
rather than optimization play an important role" (Selten, 1987, pp. 84f.).

5. 3An Evolutionary Game

Accordingly, evolutionary game theory takes an equilibrium as the outcome of
adaptation (or learning) and selection rather than as the result of strategic
reasoning by rational agent. Thisidea has been formalized by two sets of solution
concepts: static equilibrium concepts, the evolutionary stable strategies (ESS)
and its variants, which are closely related to the Nash equilibrium, and a set of
dynamic concepts which examine the stability of the evolutionary process
(asymptotic stability or Liapunov stability). In the latter case, the dynamics of the
process is often described by the standard replicator equation which says that the
growth of state variable xjt (in timet) is defined by the difference between its
fitness, f(i,xt), and the average fitness of the population, f(xt xt) wherextisa
vector which hasthe elements xjt withi = 1,...,n. Here, xjt can be the share of a
social group in apopulation, or the share of a strategy (or amode of behavior)
picked by aset of players. In the latter case, fitness can be identified by payoffs.

Theformal expression of the replicator functionis:

(R) dxj Udt = x; U [f(i, xY) - (XD
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A stateisarest point if the state variables xjt, i = 1, ....,n, do not change, i.e., if
dxj¥/dt = 0 holdsfor all derivatives with respect to timet. A rest point is
Liapunov stable if the dynamic process does not take states which are close to
therest point far away in case that the system is destabilized by aexternal shock.
A rest point isasymptotically stable if any dynamically process which starts
sufficiently close to the rest point convergesto thisrest point. The specification
of closeness decides whether the dynamic model isglobally or only locally
asymptotically stable. If the basin of attraction coversthe full domain of each
state variable, then the dynamic system is globally stable.

Figure 6: Rest Points and Liapunov Stability

Payer 2
L R
Player 1 T (1,1) (1,0)
B (1,1) (0,0)

We canillustrate some of these concepts by means of the gamein Figure 6.18
First, we can observe that the game has two obvious Nash equilibriain pure
strategies, however, any mixed strategy on T and B is part of a Nash equilibrium if
player 2 picksL. But al Nash equilibria of this game are weak. To prepare for the
evolutionary interpretation of the game, we assume that p isthe share of strategy
T in the population of player 1: either we assume that population 1 consists of p
players of type 1 who pick T and (1-p) players of thistype who pick B, or we
think of type 1 players who randomize on picking T and B with probabilities p
and (1-p). Correspondingly, q represents the probability (or share) of L in
population 2.

We now describe the possible development of pt and gt by means of

replicator functions of thetypein (R). We get:

18The gameisin Samuelson and Zhang (1992); we follow its use and interpretation in Mailath (1998).
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(R1) dpt/dt = pt (1-p)(1- f) and

(R2) dat/dt =t (1- df)

These two differential equations indicate that the system has arest point for gt =
1; irrespective of pt, i.e., the composition or behavior of population 1. If gt = 1
both (R1) and (R2) are zero, i.e., nothing will change aslong as thereis no
external shock such that an agent chooses a different strategy. Moreover, the
system will not be destabilized if there is an external shock so that pt changes as
long of = 1. However, what happens if "suddenly" some members of population 2
choose R instead of L such that qt < 1. (Of course, this changein behavior is not
"rational” because the R strategy is strictly dominated by L.) As aconseguence we
expect from (R2) that the gt will grow till ot = lisachieved and, again, all
members of population 2 pick L. Moreover, we expect from (R1) that pt, the
share of members of population 1 who pick T, will increasetill either qt = 1 or pt
= 1 or both conditions are satisfied. If pt isfar away from pt = 1 whileqtis close
toqt = 1, since the shock which lead to gt <1 was small, then we expect that gt =
1 is reached before pt = 1and there will be anew rest point (3,1) close the
combination (pt,1) which characterized the earlier rest point (with t' > t). Thus the
rest points of the dynamic system described by (R1) and (R2) are Liapunov

stable. However, they are not asymptotically stable because the derivativesin

(R1) and (R2) are nonnegative and external shockswill always lead to an increase
of pt until pt =1 isreached. As a consequence, an earlier rest point can never be
reached after a perturbation which affected of. The exception seems to be with
state pt =1 and of = 1. A shock in ¢ , which implies that parts of the population 2
play R, inducesagrowth of qttill gt = 1 isreached while pt ( = 1) will not

change. However, if thereis (only) aperturbationin pf such pt <1and qt=1,
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then it follows from the replicator functions that no forces exist that bring pt

back to pt = 1. Thus, the state pt =1 and gt = 1 isnot asymptotically stable.

5.4 Evolutionary Solution Concepts

For the analysis of an evolutionary game the dynamicsis often of interest in
order to see whether the game describes a stable environment: Liapunov stable or
even asymptotically stable. If not, the social or political controller (e.g.,
government) might consider to modify the game, possibly by changing the
payoffs. Evolutionary game also offers static concepts, like ESS, to analyze
stability problems, which are inherently dynamic, without explicitly analyzing
dynamics. A (monomorphic) population is evolutionary stableif it satisfies the
following condition (ESS) if a"mutant strategy” m invades the established
population described by strategy s.

(ESS) Thereisae® such that for everye < e° :

(1-e)f(s,s) + ef(s,m) > (1-e)f(m,s) + ef(m,m)

Note that the left-hand side of thisinequality represents the expected fitness of
the "established strategy” s, where f(s,s) isthefitness of swhen meeting a
strategy of the same kind and f(s,m) is the fitness of s when meeting a mutant
strategy. The right-hand side represents the expected fitness of the mutant m
where f(m,s) and f(m,m) express the fitness of m when m meetssand m,
respectively.

The value of €° can be very small, in any case, the inequality condition has
to hold for all e < €°. Thus, if we find avery small €°, so that entry of misonly
"marginal”, and the inequality condition in ESS holds, then the population sis
evolutionary stable. ESS implies that

(i) f(s,)® f(m,s) and
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(i) if f(s,9) = f(m,s) then f(s,m) >f(m,m)

It is straightforward from (i) that ESS implies a Nash equilibrium wherem
represents the possible deviation. It is also straightforward that there are Nash
equilibriawhich do not satisfy ESS, e.g., if f(s,s) =f(s;m) =f(m,m) holdsfor all
and the Nash equilibrium (s,s) is weak.

Static solution concepts to evolution seem especially appropriate when
thedynamicsof social evolution is not continuous and the replicator functions
areinappropriate. | have argued above that learning can be fast and
communication can alow for aimost immediate changes on alarge scale. It
therefore seems appropriate to consider values of €° which are non-marginal
when we apply ESS to human interaction. For example, Peters (1997) discusses a
modified ESS-concept for the analysis of larger invasions by making €° an
exogenous parameter. He applies this concept to the emergence of standards
where critical mass effects and threshold val ues are substantial and
communication and learning are essential.

Thereisastrong relationship between static solution concepts, such as
ESS and Nash equilibrium, the stability results of the dynamic analysis captured
by the replicator function.® For example, if astate xt is asymptotically stable
then it coincides with a Nash equilibrium. If xt satisfies ESSthen it is
asymptotically stable if the continuous replicator dynamics apply. However,
asymptotically stable rest points of the replicator dynamics do not necessarily
satisfy ESS, e.g, if some of the mutants are considered with zero probabilities,
only.

If agameisasymmetric, likein Figure 6, then aNash equilibriumis
asymptotically stable if and only if it is strict (which is not the case in the game
of Figure 6) and the dynamicsis described by replicator functions. However, if a

game is asymmetric then ESS does not exist. ESS exists for the symmetrized

19Results are summerized, e.g. in Mailath (1998).
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game, where players have equa chancesto be in the alternative roles which imply
theasymmetry, if astrict Nash equilibrium exists for this game. From thiswe can
conclude that ESSis a more rigorous concept for testing stability than
asymptotic stability while the latter is more rigorous in thistest than the Nash
equilibrium concept. The Nash equilibrium is, however, more rigorous than the
rest point concept. For instance, if only strategy R will be played in the game of
Figure 6, so that gt = 0 then the state pt =1 and gt = 0 is arest point, but not an
equilibrium.

Theseresults can be directly applied to problem of equilibrium selection
which, however, isonly relevant if one worksin this category. We have outlined
aseriesof arguments above which do not necessarily support this approach. But
the evolutionary approach does give a nice interpretation of mixed strategy by
means of introducing heteromorphous populations with members who
characterized by different pure strategies. (See the game in Figure 6 above.)
Unfortunately, so far no systematic analysis exists which relates the formation of
beliefs with the evolutionary approach. Are we more successful, i.e., morelikely
to survive, if we solve the epistemic gamefor infinite levels of belief formation?
Or should we simply be more optimistic about the beliefs which other players
have about ourselves?

6. Final Remarks

The hypothesis of the above brief history of game theory is that the various stages
of its development are the result of different assumptions on the nature of the
decision makers, i.e., of the "image of man" underlying the various approaches.
Thisexplainswhy | did not discuss cooperative game theory whichis
characterized by the assumption that the players can make binding (and

enforceable) agreements. As a consequence, the coordination of strategies and
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solving conflicts are no problem if player want to solve them. What remainsis
the question on what result the players will agree.?°

Of course, this brief history has omitted many issues of game theory but
my intention was not to give acomplete overview - only to discuss the changesin

"styl€" and to relate them to changesin the "image of man".

20geg, e.g., Owen (1995) for the Nash solution ( pp. 190-197), the core and stable sets (pp. 218-232) and
related solution concepts of cooperative game theory.
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